Matching and Learning in Trees

ARKORE L 2HE

Tetsuji Kuboyama
IR A

Doctoral dissertation, 2007
Department of Advanced Interdisciplinary Studies
Graduate School of Engineering
The University of Tokyo C’

A Doctoral Dissertation
submitted to

Department of Advanced Interdisciplinary Studies,
Graduate School of Engineering,
The University of Tokyo,

in partial fulfillment of the requirements
for the degree for Doctor of Engineering

Typeset with piTEX 2, PSTricks (Ver. 1.10), andppic (Ver. 3.7)
Copyright© 2007 Tetsuji Kuboyama

Abstract

This thesis presents a unified understanding of edit-based approaches to approximate tree matching
and introduces new facts on the subject. It also provides a broad view of kernel-based learning methods for
trees, and proposes novel methods based on this view.

These contributions have a wide range of applications to pattern matching, computational biology, and
many other areas of computer science. As an example, this thesis includes an application to computational
biology to demonstrate thefectiveness of a novel learning method developed in this work.

This thesis is divided into two parts. The first part is devoted to a detailed analysis of the classes of
edit-based approximate tree matching such as the tree edit problem and the alignment problem for trees.
We focus on the notion of tree mapping in order to describe the semantics of approximate tree matching.
We then establish an algebraic model of approximate tree matching. This algebraic model enables us to
reveal unknown hidden relationships among a variety of edit-based approximate tree matching problems,
which include the equivalence between two problems, the alignment problem and the less-constrained edit
problem. Also, we give the tree mapping for the alignment of trees, which has been unknown for the past
decade. In addition, we reveal a class hierarchy of edit-based approximate tree matching.

The second part focuses on tree kernels for kernel-based learning of trees. We first show that existing
tree kernels are formulated by counting functions of tree mappings from the unified view based on the class
hierarchy of approximate tree matching established in the first part. In addition, we develop two novel tree
kernels more flexible than known tree kernels, and show that the counting function for the alignment of trees
does not satisfy a requirement for a tree kernel. The last half of the second part addresses the development
of a faster tree kernel without sacrificing its learning performance. We propose two simple tree kernels,
a spectrum tree kernelnd its variant, ayram distribution kernel The dfectiveness of these methods are
demonstrated by applying them to a problem in computational biology.

Keywords: approximate pattern matching, tree edit distance, alignment of trees,
machine learning, kernel methods, tree kernels, convolution kernel, glycans

Acknowledgments

| owe immeasurable debts of gratitude to so many people who have supported me along the way.
| would especially like to thank my thesis Committee Chair, Hiroshi Yasuda. He has been a generous
and superb mentor throughout this work, and gave me an opportunity to have many valuable experiences
and to encounter with fabulous people throughout the Information Security Project led by him. | am very
grateful for having an exceptional committee for my thesis and wish to thank the other committee members,
Koichi Hori, Mina Akaishi, Tetsuo Shibuya, and Terumasa Aoki for sparing their precious timefanithg
valuable suggestions.

Special thanks to Kilho Shin, who could not have been more supportive of me throughout this en-
tire work as a coworker and a reliable friend. His keen logicality and superb mathematical intuition often
shed light on my conjectures for achieving tangible results. Thanks also to Koichi Hirata, who is a highly
productive researcher with a strong commitment to excellence, for sharing his vast expertise in theoreti-
cal computer science, and for encouraging me constantly to write sound and persuasive papers; Hisashi
Kashima and Kiyoko Flora Aoki-Kinoshita for their support in their areas of expertise, kernel-based learn-
ing and glycomics respectively. It has been a distinct pleasure to have had the opportunity to work with
such leading researchers in their fields.

I would also like to express my gratitude to: Masaru Kitsuregawa for his patient support and en-
couragement, and for giving me the opportunity to continue to study at the Institute of Industrial Science
(IIS) of the University of Tokyo; All the colleagues at the Computer Center in 1S, Hitomi Fukushima,
Hiroshi Hayashi, Kiyomitsu Hirabaru, and Tsuneo Suzuki, who allowed me to concentrate on writing this
thesis; Hidetoshi Yokoi, who has mad&aets to provide me with such a pleasant working atmosphere
at the Center for Collaborative Research of the University of Tokyo; Makoto Amamiya for his endurance
while | had been drifting like a jellyfish aimlessly in the depthless abyss without realizing what an ample
research environment had been provided by him; Akira Yasuhara for his generosity, a lot of helpful dis-
cussions about graph theory, dedicated support, and constant encouragement; Hiroki Arimura, who first
appreciated my work in its immature stage, and has since then always been a catalyst for advancing this
work; Tetsuhiro Miyahara, whose work on data mining of semistructured data motivated me to start on a
part of this work when | almost drifted away from research activities while being swamped with network
and database administration tasks.

| have had the tremendous fortune to encounter and get (re)acquainted with fabulous researchers
active in the front lines in their fields through this work. | would like to return my grateful acknowledg-
ment to Tatsuya Akutsu, Gabriel Valiete, Masafumi Yamashita, Jesper Jansson, Makoto Haraguchi, Sachio
Hirokawa, Kazuki Joe, Shin-ichi Minato, Jingde Cheng, Haruo Yokota, &Rahtonath, Takeaki Uno,
Shin-ichi Nakano, and Alessandro Moschitti for helpful discussions, support, and encouragement.

I would also like to warmly thank all of the people who helped or encouraged me in various ways
during this work: Kunihiko Mabuchi, Mari Yasuhara, Kyoko Shin, Juan Carlos Letelier, Tomoyuki Uchida,
Takuya Kida, Rin-ichiro Taniguchi, Akira Yamamoto, Tsunenori Mine, Naoyuki Tsuruta, Ryuzo Hasegawa,
Hiroshi Fujita, Miyuki Koshimura, Eisuke Ito, and Nobuhito Ohkura. Thanks to Bruce Furmedge and
Christina Stephens, who read part of this thesis in draft form, for suggestions and corrections in English.
Thanks also to Shelley Protte for her constant support in the English language and encouragement as a
congenial friend.

Finally, | would like to thank my family: Chiaki and Shigeko for their sacrifice and constant encour-
agement; Keiichi for being a good confidant; Yuko for her dedicated and understanding support throughout
this work; Tomoaki for his carefree smiles.

Tokyo, March 2007 Tetsuji Kuboyama

Abstract [
Acknowledgments iii
1 Introduction 1
11 Background and Objectives 1

111 Matchingin Trees 1

112 LearninginTrees 2

1.2 Organization 3

13 MainResults e 3

14 ConventionsUsedinThisThesis4

I Matching in Trees 7
2 Approximate Tree Matching 9
2.1 Distanceand Metric 9

2.2 Approximate String Matching o 9
221 StiNgsS e 10

222 String EditDistance 10

2.2.3 Approximate Common Subsequence Problem 12

224 Approximate Common Supersequence Problem — Alignment 13

225 Operational Definition 14

2.2.6 Declarative Definition, 16

2.2.7 Approximation of String Edit Distance 17

2.3 Basic Notationfor Trees 19

231 Rooted Trees 19

2.3.2 Syntactic Representation of Ordered Trees and Forests 22.

233 TreeTraversals 23

2.4 Tree Edit Distance — TaiDistance 24

24.1 EditOperations 24

24.2 Tree Edit Problem 26

243 Algorithms for Ordered Trees 26

244 Algorithms for Unordered Trees 31

2.5 Tree Mappings o o o 32
251 Tree Mapping based Distance 32

252 Tai Mapping — Declarative Definition of Tai Distance 34

2.5.3 Approximate Common Subforest Problem 36

2.6 Variants of The Tree Edit Problem 37

26.1 UnitCosts 37

2.6.2 Largest Common Subforest Patterns. 38

2.7 Alignment of Trees and Alignment Distance 38

2.7.1 Operational Definitions Lo 38

2.7.2 Approximate Common Supertree Problem 40

2.7.3 Algorithms for Ordered Trees 41

274 Algorithms for Unordered Trees oo L 45

Contents

\'

Vi Contents
275 Alignable Mappings 46

2.8 Structure Sensitive Distance L 47
28.1 Structure-Preserving Distance 47

2.8.2 Strongly Structure-Preserving Distance 50

2.8.3 LuDistance e 50

2.8.4 Constrained Distance — Isolated-Subtree Distance 51

2.8.5 Structure-Respecting Distance 55

2.8.6 Less-Constrained Distance 55

2.9 Subtree Isomorphism based Distance 57
29.1 Top-Down Distance — LCST Problem 57

29.2 Bottom-Up Distance 61

210 RelatedWork 61
2.10.1 Hierarchical View of Tree Mappings 61

2.10.2 Tree Inclusion Problem L. 62

2.10.3 Additional Edit Operations/ 62

2.10.4 GapCosts 63

2.10.5 Local Similarity betweenTrees 63

2.10.6 Approximation of Tree EditDistance 63

2.10.7 Edit Distance between Graphs 64

211 SUMMAIY o e e e 64
3 Theoretical Foundation of Approximate Tree Matching 67
31 Preliminaries e 67
3.2 Tree Homomorphism 68
3.3 Tree Embedding 70
34 INsertion e 73
35 TreeContraction e 74
3.6 Deletion e 78
3.7 Duality between Embedding and Contraction 79
3.8 SUMMANY o e e 80
4 Relationship Analysis among Tree Edit Distance Measures 81
4.1 Constrained and Structure-Respecting Mappings:=CSR 81
4.2 Structure-Preserving and Constrained Mappings2SRrt 82
4.3 Strongly Structure-Preserving and Constrained Mappings=SBr. 83
4.4 Less-Constrained Mapping Revised 84
4.5 Constrained and Less-Constrained Mappings*© Cst. 85
4.6 Alignable and Less-Constrained Mapping~nA= Cst® 85
46.1 Algebraic Formulation of Alignable Mappings 85

4.6.2 Equivalence between Alignable and Less-Constrained Mappings . . 88

4.6.3 Property of Alignable Mappings 91

4.7 Semi-Accordant Mappings:ic = Cst=SP =SR 91
4.8 Accordantand Lu Mappings:cA 2D Acc* =Luo e 92
4.8.1 Closure of Tree Mappings« . oo v oo it 93

4.9 SUMMArNY o e e e 94
Il Learning in Trees 99
5 Kernel-based Learning for Trees 101
51 Support Vector Machines 101
5.2 KernelMethods 102
5.3 Haussler's ConvolutionKernels 102
53.1 Gap-Weighted StringKernel 104

5.3.2 Spectrum Kernelfor Strings 105

5.4 Tree Kernels 105
54.1 Parse TreeKernel 106

5.4.2 Labeled TreeKernel 106

Contents Vii

543 Labeled Tree Kernel with Elastic Structure Matching. 107

544 String KernelforTrees. o 109

55 SUMMANY . . . o o e e e 111

6 Mapping Kernels for Trees 113
6.1 Recursive Expressions of Counting Functions 113
6.1.1 Mapping-based Similarity between Forests 113

6.1.2 Counting Function for Tai Mappings 114

6.1.3 Template of Counting Function for Subclasses of Tai Mappings . . .115

6.2 Positive Semidefiniteness of Counting Functions 119

6.3 SUMMANY . . . o o e e e 123

7 Spectrum Kernels for Trees 125
7.1 Treeg-Grams e 125

7.2 Spectrum KernelforTrees 129

7.3 g-Gram Distance for Trees e 131

7.4 Gram DistributionKernel o 132

7.5 SUMMAIY . . . o e e e s e e e e e e e e e e e 134

8 Application to Glycan Classification 137
8.1 GlycanData 137

8.2 Experimental Results o 138
8.2.1 ComputationTime e 138

8.2.2 Glycan Data Classification by Spectrum Tree Kernel 138

8.2.3 Predictive Accuracy 139

8.2.4 Motif Extraction by Gram Distribution Kernel 140

8.2.5 Results and Discussion 140

8.3 SUMMAIY . . . o e e e e e e e e e e e e e 142

9 Conclusion and Future Work 145
9.1 Conclusion e 145

9.2 Future Work e 146
Bibliography 149

Index 158

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
231
2.32
2.33
2.34
2.35
2.36
2.37

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

List of Figures

Dynamic programming algorithm for string editdistance 15
Exampleofatrace 16
AtreeT'and aforestof’ inducedbyU 21
The composite oftwo foresfg andFy, 22
Treel = v(F) . . . o o e e e e e e 22
Left-to-Right Preorder and Postorder numberings of an ordered tree 24 .
Examples of the three elementary edit operations 25.
Left-to-right postorder numberingofnodes 29
Two extreme examples in Zhang-Shasha’s algorithm 29.
Taimapping e e e 34
NON-TAiMapping« . o o e 35
Approximate Common Subforest Lo 37
Alignmentoftrees e 40
Alignable mapping and its alignedtree L. 40
Another alignable mapping and its alignedtree 40
Non-alignable mapping 41
Alignment problem as an editproblem L L. 41
Taieditproblem 41
Recurrences for computing alignment distance for orderedtrees A2 .
Dr (0, v2(F»)) + Tn;ipz{DT(vl(Fl)’ T)—Dr(®,T)}inEq.(24a) 42
D{lie-- o7 F)+D(Tje---eT{", F5)INEQ.(24C) 42
Two optimal alignable mappings 45
Two aligned trees obtained by using the same alignment 45,
Counterexample to transitivity in alignable mappings 46
Non-metricity of alignable distance 46
Structure-preserving mapping e e e e 48
Non-structure-preserving mapping« o v e o e 49
Asymmetricity of structure-preservingmapping 49
Constrained mapping o e e e 52
Non-constrained and structure-preservingmapping K2.
Recurrences for computing constrained distance for orderedtrees 53 .
Feature of constrained and less-constrained mappings 56 .
Recurrences for computing less-constrained distance for ordered trees 57. .
Two input trees in computing top-down distance 59
Edit graph for two ordered tresandT” 60
Top-down mappings e e e e 60
Bottom-up mapping e e e e 62
An ordered tree homomorphisffrom StoT 69
Tree isomorphisms for unorderedtrees. 70
An ordered embeddingfromStoT.. 71
An example of the property in Proposition3.19.. 72
Corollary 3.20cannot be extended to the 4-nodecase. 73.
The definition of contraction, 75
Acontractionf from StoT 75
The duality between contractignand embedding 79

iX

List of Figures

3.9

4.1
4.2
4.3
4.4
4.5
4.6

51
5.2
5.3
54
55

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3

8.4

Algebraic formulation of approximate tree matching 80
Left-to-right preorder and siblingorder 82
Folding two subtre€g(v) andT'(w) 86
Accordantmapping e e e e 92
Closure ofatreemapping o i i i i i 94
ATaimappingwithnoclosure 94
Class hierarchy of treemappings o 96
Two ordered trees for the labeled treekernels 107
Two ordered trees for the elastictree kernels 108
What is the feature space in the elastictreekernel? 1Q9.
Two ordered trees for Vishwanathan-Smola’s tree kernel 110

Expressive power of the string kernel for trees due to Vishwanathan and Smola . .110 .

A tree mapping iotVls: M = M[1,2]U M[3,3]U M[4,5]1U M[7,6] 116
A counterexample to positive semidefiniteness 120
An ordered tree with postorder numbering oL oL 126
4-grams P, abab), (P»,baab),and (P3,abab) 127
The tableountforg=4andmax® =3 128
The tableshiftforg=4andmaxD =3 128
The tree§yandTz inExample 7.6 o 131
The relationship among j, k and|UP,.(p)| forag-gramP! 133
The running time for computing; andK, 139
Areaunderthe ROC CUIVE i 139
The performances of the SVM classifier for the gram distribution kernel and the layered
trimerkernel 140

The distributions of feature scores 141

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

4.1
4.2

5.1
5.2

6.1

7.1
7.2
7.3
7.4

8.1
8.2

List of Tables

Three views of string editdistance 17
Computational complexity of Tai edit problem for ordered trees 27
Computational complexity of Tai edit problem for unorderedtrees 31
Algorithms for Tai distance for unorderedtrees 31
Some classes of approximate tree matching 37.
Computational complexity of alignmentproblem 38
Computational complexity of structure sensitive distance problems 47.
Computational complexity of tree inclusionproblem 62
Properties of tree mapping classes 95
Characteristic of tree mappingclasses 97
Feature vectors in the labeled tree kernel L. 107
Feature vectors in Vishwanathan-Smola's treekernel 110
Kernels by counting functions of tree mappings 123
The depth sequence, the label sequence, and the parent sequEnce of. 126
The transition ofreq[j][k] andlabeld] in Tyand inT> 130
The 4-gram profiles &f; (left) andT> (right) 131
The transition of thetableeqinT. 135
The data labels, and the number of each data set in the experiments 138 .
Features extracted by ourmethod 142

Xi

2.1
2.2
2.3
2.4
2.5
2.6
2.7
5.1
7.1
7.2
7.3

List of Algorithms

String editdistance and traceback L L. 14
Treetraversals 23
Zhang-Shasha’s algorithm for Taidistance 28
Alignment distance for orderedtrees L Lo o 43
Constrained distance for orderedtrees 54
Selkow’s algorithm for top-down distance 58
Chawathe’s algorithm for top-down distance 60
Labeledtreekernels e 108
BEQ . . . e e e 126
LABELGRAM o o e e e e e e e e e 127
LABELGRAMDIST e e e e e e e 133

Xiii

Chapter 1

Introduction

This thesis is a comprehensive study of approximate pattern matching and machine learning for trees. A
tree is a mathematical abstraction representing a hierarchical structure of information, which allows us to
effectively access and maintain data. The expressive power of trees is superior to strings, and inferior to
general graph structures. A string is regarded as a simple form of tree, i.e. a node-labeled tree with only
one branch.

We already have the fertile field of stringology, the study of strings, which enjoys a lot of elegant and
pragmatic methods along with the history of computer science for string pattern matching, string indexing,
and so forth. Over the fertile field of stringology, the study of trees has also been carried out for many years.
Actually, in some ways, the study of trees can be viewed as just as highly-developed and mature a field as
stringology. So what contribution to this field above and beyond the constellation of existing work on trees
can we make? In what follows, we discuss the motivation behind our work.

1.1 Background and Objectives

When considering algorithms on trees, they may remind us of a great number of data structures and al-
gorithms such as binary search trees, red-black trees, and B-tréstrees, range trees, amdd trees

(cf. [MSO05]). All of the tree structured data used in these methods are internal representatigfisiémt e
manipulation or succinct organization of entities in the real world.

For example, dfiix trees are used for indexing strings, &nd trees used for partitioningdimensional
space. These trees are obtained by reconstructing the structures of entities in the real world such as strings
of DNA sequences or two-dimensional matrices of pixel images rather than directly reflecting the surface
tree structures in the entities.

The main concern with these algorithms lies in how fiiceently construct and traverse such an
internal tree structure, whereas a tree-to-tree comparison algorithm is required for dealing with the tree
structured entities.

After all, there have not been urgent requirements for comparing tree structured entities until recently
with a few exceptions such as phylogenetic trees. The amount of tree structured data, however, not derived
from internal representations has dramatically increased in the past decade with the rapid growth of the
Internet, and some research fields such as bioinformatics. For example, tree structured data such as HTML
and XML are widely found in Web-based systems. Also, in the field of bioinformatics, we can see tree
structured data such as RNA secondary structures and glycan structures. On top of that, due to some
recent developments in graph theory, the tree decomposition algorithm enables us to view a complex graph
structure as a tree-like structure.

1.1.1 Matching in Trees

Recently the problem of measuring the similarity of two trees has been a focus of researchers in various
scientific fields such as computational biology [Aku00, Sak03, HTGKO03, AS04], image analysis [TH03d,

2 Chapter 1. Introduction

THO02, THO3c, THO3e, THO3b, Tor04, BBP04, OIs05], pattern recognition [FG00, GB02], natural language
processing [FRV04] and information extraction from Web pages [CD01, HKO05, ZL05]. For example, the
secondary structure of an RNA chain is an important factor for determining its functions. Since RNA
secondary structures are often represented trees, measuring the similarity of the trees that represent the
secondary structures of an unknown RNA chain and a known RNA chain could provide plenty of clues for
us to guess the functions of the unknown RNA from knowledge of the known RNA.

Tree edit distancé the most widely accepted metric for measuring thgedence or dissimilarity of
trees. The tree edit distance between two trees is defined as the minimum cost of a series of elementary edit
operations needed to transform the first tree into the second.

Tai presented an important correspondence between tree edit distatieeandppingTai79]. Since
then, tree mapping has been attracting the interest of researchers. The tree mapping between two trees is
a set-theoretic description of the transformation from one tree to the other. Intuitively, a tree mapping
describesvhatthe transformation between two trees is by showing a set of hode pairs, whereas a tree edit
algorithm describefow to transform one tree into the other. Tree mapping allows us to understand and
investigate tree edit distance in a qualitative and abstract way.

Other than the tree edit distance proposed by Taidistancg, a variety of tree edit distance measures
have been proposed in the past three decades. Following in the wake of Tai’s result, most of these measures
have been defined by using the notion of tree mapping in conjunction with the algorithms. For example,
the algorithms for computing thetructure-preservingTT82, Tan93, TT88, Tan95KonstrainedZha95,

Zha96], structure-respectin¢Ric97], less-constrainedLSTO01], andbottom-ufVvalO1] distance measures

were proposed according to the definitions using the notion of tree mapping, i.e. these measures have
the corresponding tree mapping definitions. We refer to the tree mapping defining Tai distance as the
Tai mapping, and we also refer to the other classes of tree mappings in the same way. In contrast, the
tree mapping defininglignment distanaemains unknown in spite of its significance since this distance
measure [JWZ95] was proposed in 1995.

In response to these results, Wang and Zhang revealed a hierarchy of some of tree edit distance mea-
sures based on the analysis of tree mapping [WZ01]. Nevertheless, these measures are not exactly based on
a common mathematical formalization. Consequently, less or more, they tend to be subject to ambiguity,
redundancy and sometimes inaccuracy in their mathematical discussion. For example, the original defi-
nition of less-constraineanapping [LSTO01], which had been prevailing (e.g. presented in a widely cited
survey on tree edit distance [Bil05], and some other publications suchta®f), is incorrect. Also, the
original definition of bottom-up mapping [Val01] is not consistent with the proposed algorithm. For an-
other example, the equivalence of notions between the structure-preserving and the constrained mappings
were mentioned in [Zha96] although both notions are not exactly equivalent. Also, the equivalence between
the constrained and structure-respecting mappings were mentioned in [LSTO01] without any mathematical
proofs.

Taking this observation into account, we aim to establish a theoretical foundation that could form a
common basis for the study of approximate tree matching, and introduce new facts including relationships
among a variety of tree edit distance measures.

1.1.2 Learning in Trees

The kernel method, a method of machine learning, provides a generic framework to address a variety of
applications, and is being extensively studied [STCO04]. The problems to which this method can be applied
include theclassification problemi.e. the problem of determining the class to which a given instance
belongs. In kernel methods, in order to design a classifier for trees is necessary to design a similarity
measure (i.e. tree kernel) between two trees. This task is very similar to designing an algorithm for tree edit
distance. The problem of computing tree edit distance is regarded as a combinatorial optimization problem
of tree patterns while the problem of computing a tree kernel is regarded as a counting problem of tree
patterns.

Since Collins and Dfiy first proposed a tree kernel for parse trees [CD01], a variety of tree kernels
have been proposed such as kernels for parse trees in natural language processing [ZAR03, CS04, SI05,
Mos06], phylogenetic trees [Ver02], Prolog proof trees [PFR06], and glycans [HYHKO04,"18%NIn this
work, we focus on general-purpose kernels for labeled trees [VS02, KK02, KSK06a].

By theoretical analysis of existing tree kernels, a significlinity between approximate tree match-
ing and kernel-based learning for trees has emerged. This thesis reveals a hidden and important relationship
between the two fields. Based on the relationship, we develop novel tree kernels more flexible than known

1.2. Organization 3

tree kernels.

From the practical point of view, we address the development of a faster tree kernel without sacrificing
its learning performance. We propose two simple tree kernels, a spectrum tree kernel and its variant, a gram
distribution kernel. Theféectiveness of these methods are demonstrated by applying them to a problem in
computational biology.

1.2 Organization

This thesis is divided into two parts. Part | is devoted to approximate tree matching, and divided into three
chapters. Chapter 2 surveys a variety of conventional edit-based approaches to approximate tree matching
with unifying mathematical formulation. Chapter 3 establishes a theoretical foundation for approximate
tree matching in an algebraic way. In our formalization, we first introduce a very general mapping between
trees, and call it a tree homomorphism. Starting with the notion of tree homomorphism, we tighten the tree
mapping gradually to adjust it to existing edit operations. Chapter 4 reveals the relationship among existing
tree edit distance measures by means of the formulation presented in the previous chapter.

Part Il focuses on kernel-based machine learning for trees, and divided into four chapters. Chapter 5
surveys conventional kernel-based learning methods for trees. Chapter 6 proposes a novel tree kernel based
on counting the number of tree mappings. Chapter 7 presents a simplfiaighetree kernel based on the
notion of treeg-gram, and presents its variant. Chapter 8 shows the application of proposed tree kernels to
the glycan classification problem. Finally, in Chapter 9, we conclude this thesis by discussing further issues
to be addressed after the entire summary.

1.3 Main Results

Here, we list the main results presented in this thesis along with references to the relevant publications.

Part I. Matching in Trees
All the results presented in this part have been published in [KSM05, KSMY05].

Chapter 3. Theoretical Foundation of Approximate Tree Matching

¢ \We have established a theoretical foundation of edit-based approaches to approximate tree matching,
which bridges the gap between operational semantics and declarative semantics of tree edit distance.

Chapter 4. Relationship Analysis among Tree Edit Distance Measures

* \We have proved that the alignment problem [JWZ95] is essentially equivalent to a variant of the tree
edit problem called the less-constrained edit problem [LSTO1].

¢ \We have identified thiree mappingcondition for the alignment of trees, which had previously been
unknown. Tree mapping provides definitions of various tree edit distance measures in a declarative
way, in contrast to the operational way of conventional definitions. To the best of our knowledge,
the mapping condition for the alignment of trees has been unknown, and the alignment of trees was
defined only in the operational way in [JWZ95].

* \We have shown that the condition of the less constrained mapping given éydlu[LST01] does
not relax the condition of the constrained mapping due to Zhang [Zha96]. In fact, we show that the
condition due to Luet al. [LSTO01] is identical to that of the constrained mapping. We revise it and
give an originally intended condition of less-constrained mapping.

* \We have proved that the constrained distance [Zha96] and the structure-respecting distance [Ric97]
are equivalent, but structure-preserving distance [TT88] is a superclass of these two distance mea-
sures.

Part Il. Learning in Trees
Chapter 6. Mapping Kernels for Trees
The results in this chapter have been published in [KSK06b].

4 Chapter 1. Introduction

* \We have presented the counting functions for the four mapping classes, i.e. Tai, alignable, semi-
accordant, and accordant mappings, in recursive form. These forms enaliieiaateevaluation by
dynamic programming.

¢ \We have proved that the counting functions for the accordant, semi-accordant, and Tai mappings are
positive semidefinite. In contrast, for the alignable mapping, a counterexample to positive semidef-
initeness has been given. Hence, the counting functions for the Tai, semi-accordant, and accordant
mappings are kernel functions whereas that for the alignable mapping is not. The accordant case
proves that the elastic tree kernel [KK02] is a kernel function.

Chapter 7. Spectrum Kernels for Trees

The results in this chapter have been published in [OHKHO05, KHOH06, KHMKKHK*06, KHK*07].

* We have proposed two new kernel functions (similarity measures) for trees spdettum tree kernel
andgram distribution kernel The spectrum tree kernel can be regarded as a natural extension of the
spectrum string kernel. This string kernel counts the number of shared substrings of a fixed length
q between two strings, while our kernels count the number of shared line-shaped connected graphs
with a fixed number; of nodes occurring in two trees without sacrificing ifE@ency as compared
with the string case.

Chapter 8. Application to Glycan Classification
The results in this chapter have been published in [KHB& KHK*06, KHK*07].

e The spectrum tree kernel and the gram distribution kernel have been applied to glycan structure
analysis. Our results have shown that our kernel outperforms the layered trimer kernel of Hizukuri
et al. [HYN*05] which is well tailored to glycan data while we do not adjust our kernel to glycan-
specific properties.

¢ |n addition, we have extracted specific features from various types of glycan data using our trained
SVM. The results show that our kernel is more flexible and capable of finding a wider variety of
substructures from glycan data.

1.4 Conventions Used in This Thesis

The following logical symbols are used for succinct descriptions.

e —P not P.

e PAN@ PandQ.

e PVQ@ PorQ.

e P=(Q if P, thenQ.

e P& (@ Pifandonlyif@.

e dx there exists:.

o dix there exists exactly one
o Vx for all z.

We use the following notational conventions throughout this thesis.

e N ={1,23,...}is the set of natural numbers.

® R is the set of real numbers.

¢ Ry is the set of nonnegative real numbers.

® ||z|1 is the/;-normon a vectoer = (z1, 22, . . ., z,,) of real numbers defined 3S ", |z;|.

Also, we use the standard asymptdbig O notationsuch as Of, Q(-), ©(-), o(-), w(-) (cf. [CLRSO01,
Chapter 3]).

/2 The shaded paragraph beginning with this leaf icon designates an open problem or an incorrect assertion in
prior work.

Matching in Trees

“For trees, you see, rather conceal themselves in daylight.
They reveal themselves fully only after sunset. | ndkreowa tree,”

— Algernon BlackwoodThe Man Whom the Trees Loved

Chapter 2

Approximate Tree Matching

Approximate pattern matching methods for trees have directly adopted many of the fundamental notions
cultivated for strings. Hence we start with a cursory review on some of the basic notions used in approximate
string matching. In particular, we concentrate on an edit-based approach, string edit distance, which is a
prevailing approach as a common framework for measuring thereince or distance between two strings.

Subsequently, we introduce the basic notation for trees, and give a comprehensive survey on a variety
of distance measures for trees presented in prior work. Toward a unified view of approximate tree matching,
we point out confusion and inconsistency inherent in prior work.

2.1 Distance and Metric

Following the convention in the approximate tree matching field, we abuse thditgamcei.e. by distance
we vaguely mean degree of dissimilarity, and then it does not necessarilymstdaain the mathematical
sense.

Definition 2.1 (Metric) A metricon a setX is a mapping : X x X — R that satisfies the following
conditions:

1. Ve,y € X d(z,y) >0 (non-negativity),
2. Ve,ye X dx,y)=0 < x=y (equality),
3. Ve,y e X d(z,y) = d(y,) (symmetry),

4. Vz,y,ze€ X d(z,z) <d(z,y)+d(y,z) (subadditivity, or triangle inequality).

The pair (X, d) is referred to as aetric space

Note that the first condition, non-negativity, is derived from the other three conditions. If the second condi-
tion (equality) is replaced with the condition

2! Ve e X d(x,x)=0,
then the mapping is callguseudometric

2.2 Approximate String Matching

First, we introduce the conventional definition of string edit distance (cf. [Gus97, Chapter 11], [NRO2,
Chapter 6], [CR02, Chapter 12], [Rah07]). The definition is given in an operational way, i.e. the string edit
distance is defined by describifgpwto compute it by applying edit operations. We refer to this way of
definition as theperational definitionNext, we show two viewpoints of string edit distance:

9

10 Chapter 2. Approximate Tree Matching

e approximate common subsequence problem, and
® approximate common supersequence problem (alignment problem).

Although these two viewpoints are a mathematically equivalent problem for strings, they lead to two math-
ematically distinct problems for trees in contract to strings.

In addition, we give an alternative definition by describimgat the string edit distance is without
using edit operations, which we refer to as theclarative definition This type of definition plays an
important role in theoretical analysis of tree edit distance.

We also review some approximation algorithms for string edit distance.

2.2.1 Strings

A finite nonempty set of symbols is called alphabet denoted byE. A stringoverX is is a finite series of
elements ok. We represent a string consisting of a series of symbals, ay, . . ., a,, as

T =aay---an (a; eZfori e {1,...,n}).

The length of string;, denoted byz|, is the number of symbols in. For two stringsc = a1 - - - a,, (a; € Z
fori e {1,...,m})andy = b;---b, (b; € Zfor j € {1,...,n}), we define aoncatenatiorof 2 andy as

x'y:al"'ambl"'bn-
Thenull string, denoted by, is a string with length 0. In particular, for any string
ETr =T€=1T.

We definex” as follows

Zn:{{s} if n =0,

{ralzem P Aaez} ifn>1

By =* we denote the set of all strings o\&ri.e.

TF = Uz”.

n>0

Thei-th symbol in a stringe is denoted byz[i]. For a stringz = a1 - - - a,, asubstringof x is a string
a; ---a; suchthat 1< i < j < n, denoted byz[:..j]. Let us defines[i..j] = e for i > j. A subsequencef
xisastringa;,a;, - - - a;, such that 1< iy <ip < --- < i < n.

Note that for a stringe, all the symbols in a substring af need to be consecutive inwhile the
symbols in a subsequence is not necessarily. For examp#t; is a subsequence ofdpestry” but not a
substring, while tape” is a subsequence and a substring.

2.2.2 String Edit Distance

Thestring edit distancerobably originated fronbevenshtein distandeev66]. The Levenshtein distance
between two strings is the number of deletions, insertions, or replacements of symbols required to transform
the first string into the second. Later, the string edit distance was generalized to consider the cost of edit
operations according to the relevant symbols to be edited [WF74].

Edit Operations

The string edit distance between two strings is defined as the minimum cost of elementary edit operations
required to transform one string into the other.
The set of elementamydit operationon a string consists of the following three operations.

Replacement of a symbol in a string by a new symbolin
Deletion of a symbol from a string.
Insertion of a symbol inX into a string.

In order to estimate the cost of edit operations, we consider the cost factor of each edit operation, which we
call anedit signaturedenoted as follows:

2.2. Approximate String Matching 11

® “q — 1" for the replacement of a symbalin the first string by a symbdlin the second,
“- + 0" for the insertion of a symbdl in the second string into the first,
e “gq +— -"for the deletion of a symbat from the first string,

where the symbol-" is not in X, and called thgap symbolLet us abuse notation by referring to each edit
operation as its edit signature although the edit signatures do not have enough information for actual edit
operations if there is no confusion. In fact, an edit signature does not tell us about the position to be edited.
This implies that we focus only on the transition of symbols for estimating the cost for edit operations
applied to a string, and do not consider the positions of symbols in the string. Werwkitg if we obtain
a stringy from a stringx by applying an edit operation

Let d be a cost function of edit signatures, and we equate the two notatfons: b) andd(a, b) as
follows:

d(a — b) = d(a,b) foralla,beXuU{-},

where we assume thdt. TU {-} x ZU {-} — R is a metric.

Example 2.2 Consider the stringstring” with the alphabek = {a,b, ..., z}.

e string =% strong (replacement ofi* by “0”)
e string ~— sting (deletion of ")
e string — staring (insertion of ‘a”) I

String Edit Problem

We here forbid edit operations with the edit signatures b such that = b. If a series of edit operations
E = {e1,...,e,) (n > 1) transforms a string into a stringy, there exists a series of strings, . . ., z,,)
such thatrg = z, z,, = y, and thei-th edit operatiore; = (a; — b;) transformsz;_ into z; for i €
{1,...,n},i.e.

el e2 €en
T=Tg — X1 —> " ——>Tp =Y.

If x =y, then we definew = 0. The cost function cos)(for a series of edit operatiords = (ey, ..., e,) is
derived from the total cost for the elementary edit operations as follows:

COst(F) = i d(e;).
i=1

If n =0, then we define codif) = 0. We refer to the series of edit operatidiisas theedit script Now let
us denote the set of all possible edit scripts to transteiinto y by £(z, y). Then the formal definition of
string edit distance is given as follows.

Definition 2.3 (String Edit Distance) The edit distance between two stringsandy is defined as
follows:
DEr = min costE).
(£,9) = ,min _cost(E)

We refer to an edit script with the minimum cost asaptimal edit script Note that the optimal
edit script is not necessarily determined uniquely. The problem of computing the edit distance between two
strings along with an optimal edit script is called #teng edit problem It is known that for any two strings
x andy, the edit distanc®""(z, y) is a metric ifd(a, b) is a metric for anys,b € T U {-}.

Recall that the Levenshtein distance between two strings is the nhumber of deletions, insertions, or
replacements of symbols required to transform the first string into the second. We refer to Levenshtein
distance as string edit distance withit costsor simply unit-cost edit distance More precicely, in this
distance measure, the cost functibn(Z U {-}) x (XU {-}) — Ris defined as

d(a.b) = 0 ifa=5,
)1 ifa#b.

We denote byDE"(z,) the unit-cost edit distance between two stringandy.

12 Chapter 2. Approximate Tree Matching

Example 2.4 LetX = {A,C,G,T}. Now considering the unit-cost edit distance between two strings
“ACTC” and “ACGT,” we can transform the first string into the second with minimum cost 2 as follows.

e ACTC =S aAcce <! ACGT, or

e ACTC =S ACGTC &5 ACGT.

Hence the string edit distance betwe&CTC” and “ACGT” is 2. |

2.2.3 Approximate Common Subsequence Problem

There is an alternative view in defining string edit distance. In Definition 2.3, we apply all edit operations
to the first string to obtain the second. In the alternative view, we usereplgcementanddeletionsas
the elementary edit operations, and define the string edit distance between two strings as the minimum cost
of edit operations to transform two strings into a common third string. In other words, this problem is to
find an approximate common subsequence shared by two strings with the minimum cost of edit operations
without insertions In this case, we permit the edit operation with edit signature -. This operation
changes nothing and is called igentity edit operation

The problem of computing the edit distance between two strings along with an approximate com-
mon subsequence of the minimum cost of edit operations is callegpfveximate common subsequence
problem It is easy to show that the approximate common subsequence problem is equivalent to the string
edit problem in the computation of string edit distance since any deletion of a synfbwh the second
string has its complementary operation, the insertiom ioto the first string with the edit signature— a.
Obviously, the replacement of a symhaoin the first string by a symbdl in the second is equivalent to the
replacement ob in the second by in the first.

Example 2.5 We consider the same problem as in Example 2.4. Then, for example, the following two
transformations give the minimum cost 2.

ACTC ACGT or, ACTC ACGT
N o~
ACT ACTT.
Hence the string edit distance betwe&CTC"” and “ACGT" is 2. |

Longest Common Subsequence Problem

When we use onlyleletionsas the elementary edit operations, and define the string edit distance as the
minimum number of edit operations to transform given two strings into a common third string, the edit
problem is said to be thiengest common subsequence prob{&@S problem). In this problem, the cost
functiond : 2U {-} x U {-} — R is given as follows:

0 ifa=b,
d(a,b)={1 ifa#band@="“-"orb="-"),
oo otherwise (replacement)

Note that this cost functiod is not a metric. Since each replacement can be replaceable by one deletion
and one insertion, any cost of replacement greater than or equal to 2 leads to the same distance (if the cost
of replacement is 24 is a metric). We denote bIPE2"(z,) the edit distance with this cost functieh
between two strings andy. The size of the longest common subsequence between two strangsy is
obtained by
2| + |y| — DX ()

5 .

Note that, in general, the LCS problem is formalized by maximizing ansediteso that the length of a
longest common subsequence is equal to the score. Many of elegant algorithms have been proposed [Gus97,
Section 12.5], [BHROQ].

LCS(x,y) =

2.2. Approximate String Matching 13

2.2.4 Approximate Common Supersequence Problem — Alignment

There is yet another alternative view in defining the string edit distance. First, let us define the notion of
supersequence. For a strimga supersequencef x is a string obtained by inserting arbitrary number of
symbols intax. For example, tapestry” is a supersequence ofest.”

In the alternative view, we use onlgplacementandinsertionsas the elementary edit operations,
and define the string edit distance as the minimum cost of edit operations to transform two strings into a
common third string. In other words, this problem is to find an approximate common supersequence shared
by two strings with the minimum cost of edit operations withdetetions We permit the identity edit
operation as in the approximate common subsequence problem.

The problem of computing the edit distance between two strings along with an approximate common
supersequence of the minimum cost of edit operations is calledppmximate common supersequence
problem As in the case of the approximate common subsequence problem, it is easy to show that the
approximate common supersequence problem is equivalent to the string edit problem in the computation
of the string edit distance since any insertion of a symbinito the second string has its complementary
operation, the deletion af from the first string with the edit signatue— -.

Example 2.6 We consider the same problem as in Example 2.4. Then, for example, the following two
transformations give the minimum cost 2.

ACGTC or, ACTT
ACTC ACGT, ACGT ACTC.
Hence the string edit distance betwe&CTC” and “ACGT" is 2. |

Alignment Problem

Once we obtain an approximate common supersequence, we can align two strings according to the super-
sequence. For example, consider the two strilg8TC” and “ACGT,” and an (approximate) common
supersequenceACGTC.” We have the following alignment.

Firststring A C T C
Approximate common supersequencd C G T C
Secondstring A C G T

In general, thealignmentof two strings is depicted, without showing an approximate common superse-

quence, by padding out each string with tpgp symbol'-" not in X to align each symbol at the same
column.

Firststring A C - T C
Secondstring A C G T -

We refer to an alignment corresponding to the edit distance aptamal alignment Note that an optimal
alignment is not necessarily unique. More formally, we can state the definition of the alignment of strings
as follows.

Definition 2.7 (Alignment of Strings) An alignmentof two stringsz andy is obtained by the following
two steps:

1. Insert gap symbols-" into « andy so that the following two conditions are satisfied:
(i) two resulting strings:’” andy’ have the same length af i.e. [2/| = |¢'| = n.
(i) 2'[4] = y'[¢] = “-" does not hold for any € {1,...,n}.

2. Collect the pairs of symbols at the same columns in order, i.e.

A= (@"11],y' 1), '[2], 412D, - -, (@' [n], ' [n]))-

The cost of an alignmem is defined as the sum of the costs of all pairs of aligned symbols :

costd) = Y d(A[]) = > d(='[i], y'[i]),

i=1 i=1

14 Chapter 2. Approximate Tree Matching

Algorithm 2.1 String edit distance and traceback

procedure EprrDisTance(z, y) procedure Traceeack(D[0..m, 0..n])
Input: = = as - - - am Input: resulting array D[Om, 0..n] of
y=by- by EpirDistance(z,)
D[0,0] « O Le—m; j e n
for i «— 1to m do vy e
D[4, 0] « D[i — 1,0] + d(a;, -) until i =0and j = 0do
for j — 1ton do it D[4, 5] = D[i — 1, j — 1] + d(a;, b;) then
D[0, j] — D[0,j — 1] + d(-, b;) v —a;x'y Y = by
for i «— 1tom do i—1-1 j—j-1
for j — 1tondo else if D[4, j] = D[i — 1, j] + d(a;, -) then
D[i, 5] « ' —apa’y Y =y
D[i—l,j—l]+d(a7;,bj) i—1i—1
min< D[i — 1, j] + d(a;, -) else if D[4, j] = D[4, j — 1] + d(-, b;) then
Dli,j —1] +d(-,b;) @ty oy e by
return D[m, n] je—j—1
end end until
return (z',y’) /* aligned strings/
end

whered : U {-} xZU{-}) \ {(-,-)} — R, and by abuse of notation we s&{a, b)) = d(a,b). An
optimal alignmenis an alignment that minimizes the cost over all possible alignmentalignment
distances the cost of an optimal alignment. We denote the set of all possible alignments betardn
y by A(x, y). Then, thealignment distanceetween two strings andy is given as follows.

DAY = min cost(4).
(z,y) A @A)

Since each column in an alignment corresponds to a unique edit signature, edit distance is equivalent
to alignment distance for strings.

2.2.5 Operational Definition

All these views so far lead to the following recurrences for computing string edit distance.

D(e, &) =0,
D(a-z, €) = D(z,¢) + d(a, -),
D(87 by) = D(Sa y) + d(_7 b)7
D(=z, y) + d(a,b)
D(a-, b-y) = min< D(a-xz, y) + d(-,b)
D(=z, by) + da,-)

wherea andb are symbols fronk, and D¢, y) denotes the edit distance between two stringnd y.
We refer to the definition or algorithm describihgw to compute string edit distance as thgerational
definitionof it.

Needleman and Wunsch proposed an algorithm [NW70] (known as Needleman-Wunsch algorithm)
for computing an optimal alignment ldynamic programming the field of computational biology, while
Wagner and Fischer introduced an algorithm for computing string edit distance [WF74]. Both algorithms
have basically the same structure although Needleman-Wunsch algorithm computes an optimal alignment
of two strings with maximum similarity score, i.e. the score is not necessarily a metric. Based on these two
algorithms, inAlgorithm 2.1, we show two algorithms for computing string edit distancer(Bistance)
and an optimal alignment corresponding to the distaneedgBack). The algorithm BrrDistance computes
the edit distance between two strings= ajay - - - a,, andy = bib, - - - b,, and TRacEBACK cOomputes two
aligned strings according to the result afrBDistance. This procedure is callettaceback EprrDistance
runs in®@(mn) time, and RaceBack runs in®(m + n) time.

2.2. Approximate String Matching 15

In this algorithm, the edit distance problem for two strings is reduced to the shortest path problem
in a kind of lattice graph called aedit graph The edit graph is constructed according to the following
definition.

Definition 2.8 (Edit Graph for Two Strings) Letx = ajaz - - - a,, andy = bib, - - - b, be strings. The
edit graphof « andy is an edge weighted graghi(«x, y) = (V, F) such that

e the set of vertice¥ is {v;; ;) | (4,5) € {0,...,m} x {0,...,n}},

¢ the set of edge& consists of the following edges:
* (vi-1,j-1), v4,5) € E with the weightd(a,, b;) for (i,) € {1,...,m} x {1,...,n},
* (vi-14), vG,;) € E with the weightd(a;, -)for (4,7) € {1,...,m} x {0,...,n},
* (vi,j-1), va,5) € E with the weightd(-, b;) for (i, 7) € {0,...,m} x {1,...,n}.

Given two stringse andy, each node of edit graph farandy is represented as B[j], which stores
the edit distance between two stringfd..i] andy[1..5] for (¢, 5) € {0,...,|x|} x {O,...,|y|}.

Example 2.9 Figure 2.1shows the edit graph for two string8CTC” and “ACGT” after computing brr-
Distance (Figure 2.1(a)) and Racesack (Figure 2.1(b)), where all the edit costs are assumed to be 1 (unit

cost), i.e.
d(a.b) = 0 Ifazbf
1 otherwise

forany @,b) € CU{-} x ZU{-}\ {(-,-)}. In Figure 2.1(a), the distance (minimum weight) from top

left to bottom right in the edit graph is computed, and it turns out to be 2 as given at the bottom right node.
Figure 2.1(b) shows two possible optimal alignments (or edit scripts). Since, by the procedcigdk,
replacements are preferred to deletions and insertions, the former alignment is obtained by this procedure.

First string A

C C
Second string A C T

T
G

A C G T

Al 0 1 1 1 L1 L. 1

(a) Edit graph obtained after computing (b) Two shortest paths in the edit graph
EpirDistance(ACTC, ACGT)

Figure 2.1. Dynamic programming algorithm for string edit distance

16 Chapter 2. Approximate Tree Matching

Improvements of Dynamic Programming Based Algorithms

Algorithms for string edit distance based on dynamic programming basically run in quadratic time, i.e. for
two strings of sizen in ®(n?) time, and it is computationally expensive for long strings. To improve the
computational complexity, many attempts have been made, and some sub-quadratic time algorithms have
been proposed based on traur-Russiangechnique [MP80], bit-parallelism [Mye99], LZ78 compression
[CLZUO02], and so forth.

A fixed-parametealgorithm is also proposed (cf. [Gus97, Section 12.2]) by fixing an upper bbund
of the number of applying edit operations. This algorithm runs ikvp{ime. Bodlaendeet al. [BDFW95]
investigated th@arameterized complexitf the LCS problem for multiple strings.

2.2.6 Declarative Definition

Here we consider an alternative definition of string edit distance by using the notiace{fWF74]. A
trace is an order-preserving mapping between two strings.

Definition 2.10 (Trace [WF74]) For two stringst = a; - - - a,,, andy = by - - - by, atraceof x andy is
M C{1,...,m} x {1,...,n} satisfying the following conditions.

1.3,), (@, i) e M[i=i < j=j],

2.6, 5), (.5 e M[i<i < j<jl

Note that these two conditions are integrated into one conditiGny), (i, ;) e M [i < j < ¢ < j’].
For two stringse = a1 - - - a,, andy = by - - - b, we denote
Mp ={1,....m}\{i e {1,...,m} | 3j (i,j) € M},
We define the cost of trace between two stringandy as follows:
costM) = Y d(a;,by)+ Y dlai,-)+ > d(-,by).
(i,5)eM i€EMp JEM;

Intuitively, the elements o/, indicate the indices of symbols to be deleted fropand the elements of
M7 indicate the indices of symbols to be deleted frgifor to be inserted inta).

Let us denote the set of all possible traces betweandy by M(x,y). Wagner and Fisher showed
that the string edit problem is reduced into the optimization problem of traces.

Theorem 2.11 (Theorem 1 in [WF74]) For two stringz andy,

D™"(z,4)= min costE)= min
(z.9) Ee&(z,y) ® MeM(z,y

) cost(M).

We refer to the definition describinghat string edit distance is by using the notion of trace as the
declarative definitiorof it.

Example 2.12 A trace of “ACTC” and “ACGT” is shown inFigure 2.2(a), while Figure 2.2(b) is not a

trace since it violates the condition of trace in Definition 2.10. |
A C G T A C G T
(a) Atrace (b) Not a trace

Figure 2.2. Example of a trace

2.2. Approximate String Matching 17

Since both the edit and alignment problems can be reduced into the same combinatorial optimization
problem of traces in Theorem 2.11, these two problems are computationally equivalent, i.e. for any two
stringsz andy, the following holds:

D™ (z,y) = D" (z,y).

By using the notion of trace, Kececiogkt al. formalized the alignment problem for more than
two strings (multiple alignment) as a combinatorial optimization problem with integer linear programming
[KLM *00].

In Table 2.1, we summarize three operational definitions of string edit distance. In this table, all the
edit operations are applied only to source strings to transform them to a target string. All these definitions
can be reduced into a declarative definition by trace.

Table 2.1. Three views of string edit distance

Problem Source(s) Target _ Operations.
Der Ins Rep
Edit x y VARV
Approximate common subsequence z,y P N Y

Approximate common supersequence
(Alignment)

x,y: two input strings, z: a common string obtained by editingandy
Det, Ins, and RiL stand for deletion, insertion, and replacement operations respectively.

T,y z v v

2.2.7 Approximation of String Edit Distance

If we want a set of strings similar to a given string pattern among a large data set of strings, it is required to
speed up the computation of string edit distance even by sacrificing the accuracy of the computation.
In addition, the metric space of string edit distance is not tractable. Actually, for a set of strjniys
metric space is represented as a set of pairwise distances between stihgstimann x n table. Then,
it is difficult to see a comprehensive structure of these strings in the metric space. If this metric space can
be embedded into a more familiar and tractable metric space such as Euclidean space while preserving the
distances between each pair of strings, it may gain the understanding of the whole structure of given data.
Driven by these motivations, a variety of filtering (cf. [NBYSTO01]) and embedding (cf. [Cor03])
methods have been proposed.

Filtering by a Lower Bound

Ukkonen introduced a distance measure between two strings gadjesin distancdUkk92], which gives
a lower bound for string edit distance (this is also known asm@-expanding embeddipgrhe basic idea
of g-gram distance is simple: the more th&elient substrings occur between two strings, the more distant
these are. A string (text) analysis basedgegram dates from Shannon’s paper [Sha48]g-§ram (or
n-gram’) is a string inx? for ¢ € N.

For two stringse, w € ¥*, if there existy, = € ¥* such thatr = y-w-z, thenz has aroccurrenceof
w. Let #x[w] denote the total number of occurrenceswoih z, i.e.

#He[w] = {y |z =yw=z A y,z€Z}.

Theg-gram profileof a stringz is the vectoiG,(z) = (#x[w]) wex«, iNdexed by allj-gramsw and arranged
in lexicographic order of-grams.

Definition 2.13 (g-Gram Distance) For two stringse andy in £*, andg € N, the g-gram distance
between: andy is defined by

D (.9) = [Gae) = o)l = 3 Maluw] —#ylull.

wexd

TThese 4" and “n” are no more than parameter symbols. Thus, it may also be mentioriedrasn,l-gram, and so on.

18 Chapter 2. Approximate Tree Matching

Example 2.14 ForX = {a, b}, consider two strings = abaaa andy = bbaaaa in X*. The 2-gram profiles
areG(z)2 = (2,1,1,0) andG(y)2 = (3,0,1,1).

w |aa ab ba bb
#rfw] | 2 1 1 O
#ylw] | 3 0 1 1

Therefore, the 2-gram distance betweeandy is DS*"(z, y) = 3. [
Note thatg-gram distance is not a metric bupaeudometric

Example 2.15 ForX = {a, b}, consider two strings = abaa andy = baab in £*. The 2-gram profiles
of x andy are the sameG(x), = G(y)2 = (1,1,1,0). Then the 2-gram distance betweerandy is
D$*(z, y) = 0 in spite ofz # y. |

Theorem 2.16 (from Theorem 5.1 in [Ukk92]) For two stringse andy, and a natural numberc N,
the following holds. .
DI w) _ pengy)
2q
Theg-gram distancé)ff““(a:, y) can be evaluated in time @ + |y|) and in space QE|? + |z| + |y|)
[Ukk92]. By Theorem 2.16, we can compute a lower bound of unit-cost edit distance much faster than the
edit distance itself, and this property is applied fidogent filtering for string search based on unit-cost edit
distance.
For a set of stringX = {x1,22,...,2,} (x; € 2* fori € {1,...,n}), and a string pattern € X*,
let us denote all the strings iK within unit-cost edit distancg from p by

XEr(p) = {z € X | Gz € X) DP"(p,z) < k},
and all the strings i within g-gram distancé: from p by
X5ha) = {z € X | Bz € X) DI*(p,2) < k}.

When we want the seYESDfT(p), we can narrow this set by first computi ﬁ‘{f(p), since by Theorem 2.16
the following holds.
XE40) € X2 0).

GraAM
Following ¢-gram based filtering, many filtering methods have been proposed such as the wavelet-
based method by Kahveci and Singh [KS01], the spaced seed methoddhyaMpMTL02] and the gapped
g-gram method by Burkhardt andékkkainen [BKO3].

String Edit Distance Embeddings

Attempts to embed a set of pairwise distances into a more tractable metric space such as a low-dimensional
Euclidean space have along history. For example, Metric multi-dimensional scaling (MMDS) (cf. [KWUO06])
is a well-known method mainly for visualization. Most of algorithms for MDS have been developed based
on heuristics without theoretical quality assurance of embeddings.

Recently, theoretical studies of embeddings have revealed some remarkable facts. Now let us denote
by ¢; normed spaces (with arbitrary dimension). If there exists a mapping™ — ¢; such that for any
two stringz andy,

DE"(x,y) < [|6(z) — $u)|l1 < § - DE(z,),

then we say that the metric space of unit-cost edit distance camibeddablénto ¢; spaces with)-
distortion ¢ > 1). Many attempts have been made for achieving a lower distodftiofor strings over
{0,1}", Krauthgamer and Rabani [KR06] showed a lower bound of distofipog n), and Ostrovsky and

Rabani [OR05] showed an upper bound of distortiBfng°97109109m)t with a probabilistic polynomial time
algorithm. The dimensionality of embedded spaces due to Ostrovsky and Rabani [OR05] is, however, at
least quadratic im. Thus, it is dificult to develop #icient algorithms straightforward from the embedding.
(Note that these results on strings oyér1}™ is extendable to larger alphabets.)

120(y/legnloglogn) — o(nc) for any constant > 0.

2.3. Basic Notation for Trees 19

From a pragmatic point of view, it is very important to develop #liceent embedding algorithm
with the best possible distortion (cf. [Bad06]). By using a dimensionality-reduction techniqueeBaltu
addressed this problem, and proposedffinient algorithm that approximates unit-cost edit distance within
a factor of nearlyy ~ n'/3 in almost linear time [BES06].

Cormode and Muthukrishnan addressed the approximation problem of string edit distance with an
additional edit operations -substring movéor block movgoperations . Shapira and Storer [SS02] showed
that the string edit problem with substring move operations is NP-complete by reducing the BIN-PACKING
problem into this edit problem. Interestingly, in approximation of string edit distance, the additinovef
operationsmakes the problem easier as opposed to exact computation. This contrast is attributed to the
fact that approximation algorithms do not constructively compute edit scripts or traces. Cormode and
Muthukrishnan proposed artheient algorithm that approximates unit-cost edit distance with substring
move operations within a factor éf= O(log log* »)' in almost linear time [CM07, CM02, Cor03].

2.3 Basic Notation for Trees

Trees we consider in this thesis are mainly labeled rooted trees, in which each node is labeled from a
finite alphabet. Arnordered treeis a tree in which the left-to-right order among siblings is given. An
unordered treds a tree with no order among siblings. In order to formulate these trees, we employ a subclass
of partially ordered set theory (or lattice theory) and its algebraic system rather than graph theory since
approximate pattern matching between two trees is considered as an order-preserving mapping between
two ordered sets.

2.3.1 Rooted Trees

We define a tree as a subclass of a partially ordered seartdally ordered sefor aposetfor short) is a set
V with a binary relation< (called apartial order), denoted by ¥, <), that satisfies the following:

1. VeeV (z<x) (reflectivity),
2. Ve,yeV <y ANy<z = zxz=y) (antisymmetry),
3. Vr,y,zeV (x<yANy<z = zx<z) (transitivity).

If the setV in a poset ¥, <) is finite, we say the poset finite. Two elementse,y € V do not always
satisfy eitherr < y ory < z. Thus, ifx,y € V satisfy eitherr < y ory < z, two elements: andy are
said to becomparable In contrast, ifx andy is not comparabley andy are said to béncomparable We
write x < y if < y andx # y. Also, we often writey > = andy > x for x < y andx < y respectively.
Let (V, <) be a poset, anti be a nonempty subset &. A nodez € U is minimalin U if, for all
y € U such thaty < z, it holds thatr = y. The noder is calledminimumif x is a unique minimal nodes.
If any two elements of” are comparable, then we refer 16, K) as achainor atotally ordered setand to
< as alinear orderor atotal order.

Definition 2.17 (Rooted Trees) A rooted treeT" is a hon-empty finite posel/(<) that satisfies the
following:

1. There exists a unique element V such thatt < rforallz € V,
2. Forallz,y,z € V,if x <yandx < z, theny andz are comparable.

The elements of are callechodegor verticed of T, and the node is called theoot of 7" and denoted
by root(l").

We refer to the binary relatiog as thehierarchical order where, for two nodes < y, we say that
x is anancestorof y, andy is adescendenof x. Also, for two nodest < y, we say thatc is aproper
ancestorof y, andy is aproper descenderdf .

For atre€l’, and anode € T, by (Tx)r (resp. (z)r) we denote the set of all ancestors (resp. proper
ancestors) of in T, i.e.

(to)r={yeT |z <y}, (tz)r ={y €T |z <y}

flog* n is callediterated logarithmof n, and is the number of application times of log function to get a constant, i.&.nlcg
0if n < 1; otherwise log n = 1+ log*(logn).

20 Chapter 2. Approximate Tree Matching

Note that for anyz € T, the sets{x)r and ("z)r form chains, and Definition 2.17.2 can be replaced with
the following equivalent condition:

2! The set () is a chain for every € V.

For a tre€l’, by V(T'), we denote the set of all nodes’lih and by<r the hierarchical ordex of T’
for clarity. We also writex € T instead ofc € V(T') for short.

The parentof a non-root node:, denoted by pai), is the minimum nodg inthe set{z € V' | z >
x}, and conversely, the nodeis called achild of par(z). The set of all children of a nodeis denoted by
ch(z), i.e. ch¢) = {y € V \ {root(T)} | parly) = x}. For any two distinct children of a node, one node
is said to be aibling of the other. A node with no children is calledemf. The set of all leaves in a tree
T is denoted by leaves)). Thedepthof a nodex is, denoted by depf, the number of proper ancestors of
x, i.e. depf) = |{y | x < y}|. The depth of any root node is 0. By d&})(we denote the maximum depth
of T, i.e. dep{") = max{dep() | = € T}, and call it thedepthor heightof T'. The size of a tred" is the
number of nodes iff", denoted by T'|. For a noder, the size of ch() is denoted by deg{), and referred
to as thedegreeof . The maximum number of children for all nodes in a tiées denoted by ded(), i.e.
deg(l") = max{degf) | z € T}, and referred to as thiegreeof 7.

Note that a rooted tre@& pursuant to Definition 2.17 is naturally regarded as a directed graph. In
fact, by defining the set of nodes &{T") and the set of directed edges B§I') = {(z,par@)) | = €
V() \ {root@)}}, (V(T), E(T)), we have a directed gragh = (E(T), V(T)).

A tree may be equipped with another order in addition to the hierarchical order. This additional order
is called thesibling order, denoted by, and defines the left-to-right relation between nodes.

Definition 2.18 (Rooted Ordered Trees)A rooted ordered tred’ is a triplet (/, <, <) such that the
pair (V, <) is a rooted tree, and the palr,(<) is a non-empty finite poset that satisfies the following:

1. Foranyz,y € V, two nodesr andy are comparable with respect to the sibling order if and only
if z andy are equivalent, or incomparable with respect to the hierarchical order.

2. For any distinct nodes, y,z’,y' € V,if z <2/, y <y’ andz’ < ¢/, thenz < v.

We define the notatior, >, and>- for the sibling order in the same way as the hierarchical order. For two
nodesr < y, we say that: is to theleft of y, andy is to theright of z. Also we denote by<r the sibling
orderin atred’.

We refer to the rooted trees without the sibling order asitiherdered treesand to the rooted ordered
trees as the@rdered treedor short. Also, we use the tertreessimply to refer to both the ordered and
unordered trees if there is no confusion. For example, if we say “This property holds for a tree,” we mean
that the property holds no matter whether the relevant tree is ordered or unorderéd. 8y and .75, we
denote the set of all trees, unordered trees, and ordered trees with finite nodes respectively.

We define dorestby omitting the condition 1 in Definition 2.17. As in the case of trees, we define
ordered forestandunordered forestsand use the terfioreststo refer to both ordered and unordered forests.

Definition 2.19 (Forests) An unordered foresk’ is a finite poset¥, <) that satisfies the following:
1. Forallz,y,z € V,if x <yandx < z, theny andz are comparable.

An ordered forestF is a triplet (/, <, <) such that the pairl(, <) is an unordered forest, and the pair

(V, <) is a poset that satisfies the following:

2. For anyz,y € V, two nodesr andy are comparable with respect to the sibling order if and only
if z andy are equivalent, or incomparable with respect to the hierarchical order.

3. For any distinct nodes, y,2',y' € V,if x <2/, y <y anda’ < ¢/, thenz < y.

As in the case of trees, for a foreBt = (V, <), we denote by (F) the set of noded’, and by<p the

hierarchical ordeK, and by=< the sibling order for clarity. We also write € F' instead otr € V(F') for

short. The size of a foredt is the number of nodes ift, denoted by F'|. By .#, %y, and%o, we denote
the set of all forests, unordered forests, and ordered forests with finite nodes respectively.

2.3. Basic Notation for Trees 21

Definition 2.20 (Forest Induced by a Set of Nodes) et T" be a tree, and’ be a subset oV (7). A
forest of T"induced by a set of nodésis a forestI'[U] = (U, <) (or (U, <, <) for ordered trees) defined

as follows:

1. V(T[U) =0,
2. Vz,yeUlz <y <= z<rvyl
3. Ve,yeUlz 2y < = =2ry] (only for ordered trees).

By F'(v) we denote the forest &f induced byV (T'(v)) \ {v}.
Example 2.21 Figure 2.3depicts a tre€’, and a forest of" induced byU, i.e. T[U], where

U = {t2, 3, ts5,t7, tg, t10, t12, t13, t15}.

T[U]
t3 ts te t7 t10 t13 t15

Figure 2.3. A treeT" and a forest off” induced byU

Normally, trees and forests are denoted with upper-case letters and nodes with lower-case letters.
Preferably, we use for trees lettels S, T'; for forests the lette'. Optionally, subscripts and primes are

used.
A forestF’ is called asubforesof a forestF if V(F”) is a subset o¥/ (F'), and the hierarchical order

(and the sibling order for an ordered tree)fdfare inherited from¥.

Definition 2.22 (Complete Subtree)Let T be a tree. Acomplete subtreef T' rooted aw € T'is a tree
S defined by

LV(ES)={zeT |z <rv}

2. Vo,ye Sz <sy < z<ryl)

3. Vx,ye S|z gy < = =ry](onlyfor ordered trees).
By T'(v) we denote the complete subtre€lofooted aty € T'. In the same manner, we define@mplete
subtreeof a forestF' rooted atv € F'.

A forest F” is called acomplete subforestf a forestF' if F” consists of complete subtreeshn

Remark 2.1 The termsubtreeis used in several meanings. In this definition, ‘Bf{p) we denote the
complete subtree rooted atc 7. On the other hand, for any subset of nodes V(T) such thatl'[U]
forms a tree, if every edge A[U] is also an edge ifl’, then the tre@[U] is referred to as theubtreeof

T, otherwise, aubtree patterrof 7.

Definition 2.23 (Labeled Trees and Labeled Forests) et ¥ be a nonempty finite set of symbols,
calledalphabet and letl : V' — X be alabeling functionfrom a set of node¥ to an alphabek. If all
the nodes in a tree or a forest are labeled by a labeling funttime say that the tree or the forest is

labeled

22 Chapter 2. Approximate Tree Matching

F I
FloFQ:T;:TQo---oTn F:T10ﬁ0-~-0Tn
Figure 2.4. The composite of two forest§ and F> Figure 2.5. TreeT' = v(F)

We use sans-serif typeface for labels, &g {a,b,c,d,...}.
We introduce the notion of thHeast common ancest@also known as thiowest or nearest common
ancestoy of a set of nodes. This notion plays a significant role in comparing structures of two trees.

Definition 2.24 (Least Common Ancestor)For a treeT’ and a set of node§ C V(T'), acommon
ancestorof U is a nodexr € T such thaty < x for all y € U. Theleast common ancestaf U is
the common ancestar of U such thatz < y holds for any common ancestgrof U, and denoted by

lcam).

For a treel’, when the set of noddg C V(T') includes just two nodes andy, we have a function
-V x V — V defined by
r-y = lca({z,y}).

Example 2.25 For the tre€l” in Figure 2.3, we can observe the following.

|Ca({t3, ta, ﬁ@}) =to, |Ca({t3, te, tg}) =11, |Ca({t3}) = t3,
t3-tg = t2, t4—tg =11, tg—1t10 = ts.

2.3.2 Syntactic Representation of Ordered Trees and Forests

An ordered forest is viewed as a series of subtfBgs. ., T,, as shown inFigure 2.4, and a new tree is
constructed by adding a new node so that it is the parent of the roots of all subtrees as shigurei2.5.

From this observation, we introduce yet another representation of ordered trees and forests in a syntactical
way. This syntactic representation is inspired by the notation due to Dulucq and Touzet [DTO3b].

Definition 2.26 (Syntactic Representation of Ordered Trees and Forestshet 71,...,T, (n > 0)
be a series of ordered trees. Bye - - - ¢ T,, we denote a concatenation of ordered trégs. ., T, in
order. We refer to a concatenation of ordered trees asdered forestIf n = 0, i.e. an ordered forest
with no trees, we refer to it as ampty forestand simply writef). We also use the notatio®!" , T;
instead off; e - - - @ T}, for short. Let us defing; e --- o1, = () fori > j.

Let F' be anordered forestl; e - - - @ T}, andv be a node not included iVi(£'). The ordered tree

v(F) is defined as follows.

e V(u(F) = (UL V(T3) U {0}

e 1 < yif and only if one of the following holds.
* x,y € T; for somei, andx < yin T;.
"y =w.

e 1 < yif and only if one of the following holds.
* x,y € T; for somei, andz < y in T;.
*xeT,yeTjandi <j.

2.3. Basic Notation for Trees 23

Algorithm 2.2 Tree traversals

procedure Preorber(v(F) @ F) procedure Postorper(v(F) e F)
visit(v) Postorper(F) if F # ()
PreorDER(F) if ' # () Postorper(F”) if F # ()
PrREORDER(F") if F' # () visit(v)

end end

This representation can be defined in recursive form, and it is convenient for decomposing a tree
structure recursively. In the following, we give the definition in a mutually recursive manner (See Figure 2.4
and Figure 2.5).

Definition 2.27 (Recursive Definition of Ordered Trees and Forests) et 95 be the set obrdered
treesdefined hereinafter, and letbe a connective symbol. The setartlered forestss the smallest set
%o such that:

(F1) T € 95 = T € Zo.
(FZ)Tl,...,TnEyO:>T1.-~-.Tn€ﬁo.
(F3)F1,...,Fn€ﬁo=>Flo~--anE§o.

Let ¥ be the set of nodes. The setarflered treess the smallest sefp such that:

(Move? = ve Db.
(T2) ve?¥ AN FeFo = v(F)e D.

For an ordered foredt =Ty e --- o T},, we writeT; € F forany: € {1,...,n}.

Example 2.28 The tree in Figure 2.3 is represented as
ta(ta(ts @ ta(ts @ te) @ t7) @ tg(to(tio @ t11)) @ t12(t13 @ t14(t15)))- I

Note that a forest can b whereas a tree must include at least one node. A tree and a forest are
usually represented B and F' (possibly with a subscript or a superscript), respectively. In comparing two
forests or trees, we use the following matching conventions:

TeF =T e---0T, = T=T1 N F=Tre---eT,,
Fel =Te---0T, = T=T, N F=Tie---0T,
TeF=T = T=T AN F=0,
FeT=T = T=T AN F=0,
v=0v'(F) = v=0v" A F=10

2.3.3 Tree Traversals

A tree traversal is a way of enumerating all the nodes in trees. Here, we present two basic traversal schemes
for ordered treespreorderandpostordertraversals. In deft-to-right preorder traversal, the root of a tree

is first visited, and then the subtrees rooted at its children are visited from left to right recursively. (In a
right-to-left preorder traversal, these children are visited from right to left recursively.)

On the other hand, inlaft-to-right postorder traversal, the root of a tree is visited after all the subtrees
rooted at its children are visited from left to right recursively. (Iright-to-left postorder traversal, these
children are visited from right to left recursively.) We referdedt-to-right preorder or postorder simply as
preorder or postorder if otherwise stated.

In Algorithm 2.2, we show the procedures for the left-to-right preorder and postorder traversals.
These procedures are initially called as:ékper(7") and Rstorper(T") for an ordered tre&'. The proce-
durevisit(v) depends on the application. We have the procedures for right-to-left preorder and postorder
traversals by rewriting the first line of each procedure respectively as follows:

procedure PreorDER(F” @ v(F))
procedure Postorper(E” e v(F))

24 Chapter 2. Approximate Tree Matching

Example 2.29 Consider a labeled ordered tr&éen Figure 2.6, in which each label is attached to the left of
each node. Figure 2.6(a) depicts preorder numberifig aof which each number is attached to the right of
each node, and Figure 2.6(b) depicts postorder numberitig Atcording to these orders, we can serialize
the labels inl". We refer to these serialized labelslalsel sequencesf 7.

The label sequence @f in left-to-right preorder is &bcdef” while the label sequence @t in left-to-
right postorder is ¢edbfa.”

T T
anl anb
bd2 fo6 bg4 fob
co3 do4 col do3
eod eo?2
(a) Preorder numbering (b) Postorder numbering

Figure 2.6. Left-to-Right Preorder and Postorder numberings of an ordered tree
1

For a tre€l’, by < we denote the left-to-right preorder Then, the formal definition is given as
follows.

Definition 2.30 (Left-to-Right Preorder) For a tre€l’, theleft-to-right preorderof 7" is the minimum
total order<r satisfying the following: for any,y € V(T)),

*rx<ry = zdry,
® x =ry = x <y,

If x # y andx <47 y, we denoter < y. In other words, for a tre&, the left-to-right preorder of”
is a common linear extensibmof the hierarchical order and sibling order Bf It is easy to see that the
left-to-right preorder off" is uniquely determined, and totally ordereda(il").

2.4 Tree Edit Distance — Tai Distance

Tree edit distance is a generalization of string edit distance. In this section, we review the operational
definition of tree edit distance along the lines of string edit distance.

2.4.1 Edit Operations

The tree edit distance between two trees is defined as the minimum cost of elementary edit operations
required to transform one tree into the other [Tai79, ZS89].
The set of elementargdit operationon a tre€l” consists of the following three operations.

Replacementof a noder in T by a new node notinT'.
Deletion of a non-root node: from 7', moving all children ofx right under the parent af.

Insertion of a new node: into T" as a child of a nodg in 7', moving a subset (a consecutive subsequence
in the case of ordered trees) g§ children and their descendants right under the new nodeote
that this is the complementary operation of deletion.

A totally ordered setX, <) is alinear extensiorof a poset &, <) ifforany z,y € X,z < y = z < y holds.

2.4. Tree Edit Distance — Tai Distance 25

Remark 2.2 (Root-Editable Operations) According to the definition of edit operations, we cannot delete

the root and insert a new root of any tree. This setting is just for theoretical tractability. Actually, in most
algorithms of (general) tree edit distance, it is allowed to edit the root of any tree as well as the other nodes,
and edit operations are defined on forests instead of trees. We may assume, without loss of generality, that
the root of any tree remains intact by any edit operation since we can add an abiding dummy root on the top
of the root of the original tree, and regard it as the new root. By removing the dummy root after applying
all the edit operations, we have the sanfe& of root-editable operations. In fact, in spite of the definition

of edit operations, we employ root-editable operations in this thesis.

As in the case of strings, in order to estimate the cost for edit operations to transfornyddradree
T, we denote eackdit signatureas follows:

® “s+— t” for the replacement of a nodein S by a nodet in T,
e “c— ¢" for the insertion of a nodéin 7' into S,
® “s+— ¢" for the deletion of a node from S.

The symbok denotes aull node, and we assume the label of any null nedeagap symbaqli.e. i(g) ="-."
Let us abuse notation by referring to each edit operation as its edit signature although the edit signa-
tures do not have enough information for actual edit operations if there is no confusion. W& w#iteT,
if we obtain a treel” from a treeS by applying an edit operation
Let d be a cost function of edit signatures, and we equate the two notalfons: y) andd(x, y) as
follows:

d(s—t) = d(s,t) forall (s,t) € (V(S)U{e}) x (V(T) U {&}).

Note that each edit signature is used just for a cost factor of each edit operation. Then an edit signature
cannot be a representation of edit operation itself. In fact, the edit signature for insertion does not have any
information about where the node is to be inserted. Moreover, almost all conventional models based on edit
distance have factored in just a transition of the labels of edited nodes, because this simplification enables us
to estimate the cost for edit operations regardless of the applicative order. It may oversimplify in a specific
application, and establishing a more general edit model is an open problem to address, although it goes
beyond the scope of this thesis.

Example 2.31 Figure 2.7 shows that the three elementary edit operations. |

Replacement —
T —
t
Deletion N
Xr — €
v w Y z
i
Insertion —
E— X

Figure 2.7. Examples of the three elementary edit operations

26 Chapter 2. Approximate Tree Matching

2.4.2 Tree Edit Problem

We here forbid edit operations with the edit signatures y such thatc = y. If a series of edit operations
E = (e1,...,e,) (n > 1) transforms a tre# into a treeT’, there exists a series of tre€k, ..., T,,) such
thatTy = S, T,, = T, and thei-th edit operatiore; = (s; — t;) transformsTl;_; into T; fori € {1,...,n},
ie.

S=To T % ... 25T, =T

If S =T, then we definew = 0. The cost function cos)(for a series of edit operatioris = (ey, ..., e,) iS
derived from the total cost for the elementary edit operations as follows:

COstF) = zn: d(e;).

i=1

If n = 0, then we define codi{) = 0. We refer to the series of edit operatiofisas theedit script By
E(S,T) we denote the set of all possible edit scripts to transfSrimto 7'.

Tai presented the following edit distance for trees [Tai79]. Although a variety of tree edit distance
measures have been proposed, Tai's distance measure is recognized as the most standard one, and we refer
to it asTai distanceto distinguish it from the other variants of tree edit distance.

Definition 2.32 (Tai Distance [Tai79]) The edit distance between two tre€sand 7" is defined as
follows:
Tar _ ;
DS, T) = Ee@(lgﬂ cost().

We refer to an edit script with the minimum cost asogmimal edit script The problem of computing
the edit distance between two trees along with an optimal edit script is callé@éhedit problemor more
specificallyTai edit problem

Tai showed that ifl is a metric, then the tree edit distance is also a metric. In particular, Tai defined
the cost functionl as a metric over node labels, i.e.

d(z,y) = di(i(z),(y)) forall (z,y) € (V(S) U {e}) x (V(T) U {e}), (2.1)

whered; : (ZU{-}) x (EU{-}) — Ris ametric. Throughout this thesis, we assume that the cost function
d is a metric.

We refer to Definition 2.32 as apperational definitionof tree edit distance, or amperational se-
manticsof tree edit distance. We refer to a specific algorithm for computing tree edit distance also as an
operational definition (or semantics).

2.4.3 Algorithms for Ordered Trees

The algorithms for computing Tai distance for ordered trees have been continuously improved since Tai
proposed an Gf) time and space algorithm [Tai79] in 1979, wheredenotes the size of inputs (=
max{|T1|, |Tz|} for given two treesI; and7,). Subsequently, Aoki presented a top-down algorithm
[Aok83] with the time and space complexity of %), and it was followed by a bottom-up algorithm
[Tan83] which runs in O¢*) time and O¢?%) space. Zhang and Shasha independently developed a bottom-
up algorithm [ZS89] which runs in @) time and Og?) space, and Klein improved their algorithm, and
proposed an algorithm [Kle98] with @¢logn) time and O logn) space (this space bound can be im-
proved to O6?) due to Klein’s comments cited in a survey [Bil05, Section 3.2.3]). It is notable that Klein's
algorithm runs in the same computational complexity evemufoootedordered trees.

These algorithms are all based on decomposing tree structures with dynamic programming, and have
been improved by refinindecomposition strategfpr trees. Dulueq and Touzet conducted an intensive
analysis of decomposition strategy for trees [DT03b, DTO05], and proved a worst-case lower bound of
Q(n?log? n) time for any decomposition strategy based algorithms [DT05, Corollary 16].

Later, without dynamic programming, Chen proposed a novel algorithm [Che01] by reducing the tree
edit problem into a matrix multiplication problem. Chen’s algorithm runs in®J time and O(3) space.

Then, Klein’s algorithm had been still asymptotically moStagent.

2.4. Tree Edit Distance — Tai Distance 27

Table 2.2. Computational complexity of Tai edit problem for ordered trees

Reference Specific complexity n-Parameterized
Time Space Time Space

[Tai79] O(ninzh3h3) O(ninzh3h3) on®) on®)
[Aok83] O(ninzhihy) O(ninghihy) on* on*
[Tan83] O(n2nyty) O(ninyl1) O(n* on?3)
[2S89] O(ninacico) O(niny) O(n?) O(n?)
[Kle98] O(n2n;logny) O(niny)f O(ilogn) On?)
[Che01] O(nina + (2np + (250) O((ng + £3)cp +mp) On>®) on®
[DMRWO7]* O(nfna(1 + log 22)) O(niny) O(n®) O(n?)
Worst-case lower bounds in decomposition strategy based algorithms
[DTO3b, DTO5] Q(n1nlognilogny) Q(n?log®n)
[DMRWO07] Q(nan3(1 + log Z—;)) Q(nd)
Fixed-parameter algorithms Remark
[SZ90] O(K2nymin{/y,¢5}) O(niny) unit costs
[Tou05] O(k%n) O(kn) O(k?n) time for traceback

n;: size of treeT; for ¢ € {1, 2}, and assume that; < ny = n,

hi: height (depth) of tre€’; for i € {1, 2}, ¢; = |leaves(;)| for i € {1, 2},

c; =min{¢;, h;} fori € {1,2}, K fixed upper bound of distance.

k: fixed upper bound of the number of insertions and deletions.
T This bound is reported in a survey [Bil05, Section 3.2.3] as Klein's comments.
1 A worst-case optimal algorithm in decomposition strategy based algorithms.

Based on the decomposition strategy framework proposed by Dulueq and Touzet [DTO3b, DTO05], the
most recent improvement has been made by Demeiiré. [DMRWO07]. They presented an @X)-time
and O@?)-space algorithm and tightened the worst-case lower bout{ietlog?® ») time by Dulueq and
Touzet [DTO5] toQ(n?) time. Thus, their algorithm is known to be worst-case optimal in decomposition
strategy.

Shasha and Zhang proposediaed-parameter algorithniSZ90] for unit-cost Tai distance. This
algorithm runs in OK? - min{n1, n,} - £) time and Of1n,) space for a fixed upper bourid of unit-cost
Tai distance, wheré = min{|leaves(1)|, |leaves(?)|}. This algorithm returns the unit-cost Tai distance
between given two trees if the distance is at mi@stotherwise stops. Touzet proposetixad-parameter
algorithm[Tou05] without unit-cost restriction. This algorithm runs ink3¢) time and Okn) space for a
fixed upper bound of the number of insertions and deletions.

We summarize the complexities of these algorithmsTable 2.2 Among these algorithms, in
what follows, we show Zhang and Shasha’s algorithm since it is succinct and is the basis of the other
decomposition-based algorithms.

Zhang-Shasha’s Algorithm for Ordered Trees

Zhang and Shasha’s operational definition of Tai distance is simple and almost the same as the definition of
string edit distance. In their definition, Tai distance is defined on two forests instead of two trees.

D@®,0)=0
D(F e v(F"),0) = D(F & F’,0) + d(v, £)
D@, F e v(F")) =D(®, F ¢ F') + d(g,v)
D(F1, F») + D(F], F3) + d(v1, v2)
D(Fy e v1(F}), F> @ va(F3)) = min{ D(Fy e Fy, F; e v(F3)) + d(v1, €) (2.2)
D(F1 e vi(FY), F2 ® F)) + d(e, v2)

28 Chapter 2. Approximate Tree Matching

Algorithm 2.3 Zhang-Shasha’s algorithm for Tai distance
Input: T1, T

computell(-), keyrootsindex(l7), keyrootsindex(l?)
foreachm € keyrootsindex(l1) in ascending ordedto
foreachn € keyrootsindex(l) in ascending ordeto
TreeDist(m, n)
return Dp[|T1], |T2[]

procedure TreeDist(m, n)
D(®,0) < 0
for i < ll(m)tom
D(T1[ll(m)..i], D) < D(T1[li(m)..i — 1], 0) + d(T1[7], €)
for j — li(n)ton
D, T2[li(n)..5]) < D, T2[li(n)..j — 1]) + d(e, T2[5])
for ¢ < li(m)tom
for j « lli(n)ton
if 11(7) = ll(m) and li(j) = lI(n) then
D(T1[ll(m)..i], To[ll(n)..7]) <
D(71[ll(m)..i — 1], T3[ll(n)..5]) + d(T1[d], €)
ming D(T1[li(m)..q], To[ll(n)..7 — 1]) + d(e, T2[4])
D(Ta[ll(m)..i — 1], To[l(n)..j — 1]) + d(T1[2], T2[5])
Drli. j] — D(Za[li(m)..i], To[li(n)..j])
else
D(T1[ll(m)..i], To[ll(n)..7]) <
D(T1[ll(m)..i — 1], To[ll(n)..4]) + d(T1[7], €)
min{ D(T1[ll(m)..i], To[ll(n)..7 — 1]) + d(e, T2[5])
. D(T1[ll(m)..i — 1], To[ll(n)..j — 1]) + Dr[i, 7]
en

The decomposition strategy of this algorithm is simple, i.e. it always focuses on the rightmost roots of
two forests. Any complete subforeBf of F (resp. F} of F») occurs in the computation By, F3) as an
argument is called eelevant foresof F} (resp. F3). It is easy to see that the number of relevant forests
dominates the computational complexity of this type of decomposition-based algorithms.

In order to compute these recurrencéiceently, Eq.(2.2) is split into the following two recurrences.

D(Fi, F2) + Dr(v1(F7), v(F3))

D(Fy @ v1(FY), F2 ® va(Fy)) = ming D(F1 e Fy, F, e va(F})) + d(v1, €)
D(F1 @ vi(F]), F> @ Fy) + d(e, v2)
D(F1, F2) + d(v1, v2)

Dr(v1(F1), v2(F2)) = min { D(F1, v2(F2)) + d(v1, €)
D(Ul(Fl)7 FZ) + d(S, UZ)

where D1, F>) denotes the Tai distance between two fordgtaind F5, and D (11, 12) denotes the Tai
distance between two tre€s andT,. As shown inAlgorithm 2.3, Zhang and Shasha implemented the
recurrences féiciently with dynamic programming. In this algorithm, all the nodes in eachfieg <
{1,2}) are indexed by left-to-right postorder numbering from 1%g. For a tre€l’, by T[:] we denote the
node indexed by, and byT'i..j] we denote a forest induced by the set of nodgg§, T[i + 1], ..., T[4]. If

1 > j, thenTTi..j] = 0. By li(:) we denote the index of the leftmost leaf in the subtree rootdqt The
array Dr[i, 7] stores the Tai distance between two tré&gfl1[:]) and T>(73[5]), and D(F1, F>) denotes an
abstract array (or a hash table) which stores the Tai distance between two fgrastsrs.

2.4. Tree Edit Distance — Tai Distance 29

The essential idea of this dynamic programming algorithm is left-to-right postorder numbering of
nodes. In the numbering, a set of nodes indexed by consecutive numbers induces a forest, and the forest
TT[1i(z)..7] forms the complete subtree rootedrdt] for anyi € {1,...,|T|}. By virtue of such properties,
this numbering enables right-to-left decomposition of forests in a bottom-up manner.

The set of nodes keyroofE] is defined as follows:

keyroots{") = {root(I")} U {v € T'| v has a left sibling.
In implementation, the indices of the nodes in keyrdBjsqre computed as keyrooisdex ().
keyrootsindex(I') = {k € {1,...,|T|} | Bk’ € {1,...,|T|} such that < &’ andii(k) = lI(k")}.
Example 2.33 For a given tred” in Figure 2.8(a), the nodes in keyrootE] are depicted by filled circles:
keyrootsindex(I') = {3,5,8,10,11,13,15,17,18,19}.
Each iteration in the proceduredeDist(m, n) is computed along each thick line from a leaf to an ances-
tor depicted by a filled circle. Then, the thick lines and isolated filled circles in Figure 2.8(a) depict the
decomposition strategy of Zhang-Shasha’s algorithnilf@cf. [DTO05]). In this strategy, a given tree is
decomposed along leftmost disjoint paths as shown in Figure 2.8(a). We can obsefl/g/itis)..16]
forms the complete subtree rootedidtl6] sincell(16) = 12. Figure 2.8(b) shows the forest induced by
the set of node$TT:] | 7 <1 < 17}, i.e. T[7..17]. i

T T[7..17]

11
9 ©l0 16 o017

7 08 d12013v15

14
(a) keyroots() (b) ForestI'[7..17]

Figure 2.8. Left-to-right postorder numbering of nodes

T1 T2

\ /
\ /
\ /
\ /
\ /

(a) Worst (biquadratic) case (b) Quadratic case

Figure 2.9. Two extreme examples in Zhang-Shasha’s algorithm

Complexity. We here estimate the time complexity of Zhang-Shasha’s algorithm. For’& tteé a node
v € T, we define thecollapsed deptiof v as the number of ancestors @included in keyroot«('), and
denote it by cdepth), i.e.

cdepth¢) = |(Tv)r N keyroots()] .

30 Chapter 2. Approximate Tree Matching

Also, let cdepth(’) denote
cdepth") = max{cdepth¢) | v € T'}.

It follows from the recurrence in Eq.(2.2) that the number of relevant forests for eachyréeyroot(")
is |T'(v)| — 1. Then, we obtain the upper bound of the number of relevant forests for & tredollows:

Y Fw)<). |T@)]=>_ cdepthf) < > cdepth() = T - cdepth().

vekeyroots() vekeyroots(') veT veET

Zhang and Shasha showed that cdepth€ min{dep(l), leaves(’)} for a treeT in [ZS89, Lemma 6].

Hence, Zhang-Shasha’s algorithm runs inT@|- | 72| min{dep(1), leaves()} min{dep(?), leaves(?)}).
Dulucq and Tichit [DT03a] conducted an exact complexity analysis of Zhang-Shasha'’s algorithm

[2S89], and showed that the average time complexity of the algoriti®¢:i8). The worst case ob(n*)

time happens if the same two tréEsand1 in Figure 2.9are given [DT03a], while the time complexity is

®(n?) if two treesT» andT> are given. In Figure 2.9, the filled circles indicate the elements of keyfBdts(

for i € {1,2}, and we assumdi| = |T3| = n.

Decomposition-based Algorithms

Following Zhang-Shasha's algorithm [2S89], two remarkable algorithms were proposed: Klein’s algorithm
[Kle98] and an optimal decomposition algorithm due to Demaired.[DMRWO7]. These three algorithms
are all based on the decomposition strategy.

Definition 2.34 (Decomposition Strategy [DTO3b, Definition 3])For two ordered forests; and F>,
consider Tai distance betweéh and 5. Let

Fi=TFeFl =FFeT],
F=TF e Fff = Ff o TE,

whereT! and Tk are trees, and’* and F% are forests for € {1,2}. A decomposition of; is a
left-decomposition if; is decomposed intd” and F* for eachi € {1,2}. A decomposition off; is
aright-decomposition ifF;; is decomposed int6}" andT for eachi € {1, 2}.

A decomposition strategig denoted by a mapping§ : %o x %o — {left, right}. We refer to
left or right as adirection In strategy, the direction indicates the way of decomposition for each pair of
forests.

Example 2.35 In Eq.(2.2) in Zhang-Shasha’s algorithm, each forest is decomposed intigllmosttree
and the rest of forest, i.e. a fordst= Ty e---eT,,_; e T}, is decomposed intd; o - - - o T;,_; andT},. This
strategy is depicted b§(F1, F,) = right for any forestsF; and F>. |

The decomposition strategies for Zhang-Shasha’s algorithm and Klein’s algorithm are depicted as
follows.

e Zhang-Shasha’s algorithm [ZS89]:S(F1, F») = right.
e Klein's algorithm [Kle98]: Assume thatFi| > |F5|, then

i L R
S(FL F) = {lgft it IFE| < B
right otherwise.
In the decomposition strategy in Klein's algorithm, for given two fordstand F; (assumédFy| > |F>|),
the number of decomposed forests is bound by9({og|F1|) and O(F2|2) respectively. Since these upper
bounds determine the time complexity of Klein’s algorithm, it runs itif@(- |T2|2 log |T1|) for given two
treesT; andT, (assumeTy| > |T3|).
Klein’s algorithm determines the direction of decomposition according only to the complete sub-
forests of F; even if |F]| < |F;| holds for a pair of relevant foresf, and F in a subproblem, where
F| and I} are complete subforests éf and F, respectively. It is a legitimate question to ask if Klein's
decomposition strategy can be applied also to a subforegt ibf| ;| < | F3| holds in a subproblem.
Demaineet al. tackled this problem, and designed a new succinct algorithm, and proved that it is an
optimal algorithm in decomposition-based algorithms [DMRWO7].

2.4. Tree Edit Distance — Tai Distance 31

Approximate Tree Matching with Variable-Length Don't Care Patterns

In approximate string matching, a variable-length-don’t-care pattern (VLDC pattern) is an element of (
{*1)*, where the symbol “*" is a VLDC symbol, which matches any substring with cost 0 [Aku96]. For
example a VLDC patternd* ndment” matches a stringdlignment” with distance 1 since “*” matchedit”

with cost 0 and §1” is deleted with cost 1 (we assume unit costs).

Zhanget al. extended the notion of VLDC pattern matching in strings to trees, and proposed an
algorithm for approximate tree matching between two ordered trees with VLDC patterns [ZSW94] as a
variant of the Tai edit problem. In the algorithm, the following two VLDC symbols were introduced: (1)

a path-VLDC, which matches part of a path from the root to a leaf of a tree; (2) an umbrella-LDC, which
matches part of a path and all the subtrees ramifying from the nodes, except at the lowest node of the path.
This algorithm runs in the same computational complexity of Zhang-Shasha’s algorithm for Tai distance.

2.4.4 Algorithms for Unordered Trees

For unordered trees, Zhang proposed an algorithm [2ZSS92] for computing Tai distance for unordered trees
with a similar dynamic programming procedure as Algorithm 2.3, and showed it runsim&{¢;!3% (£3+
d2)n,) time, where byl, we denote ded(), and the other parameters are the same as in Table 2.2.

Also Zhanget al. [ZSS92] showed that the decision problem of determining whether the Tai distance
between two given tre€g; andTs is less than or equal tb € N (Tai distance probleiis NP-complete,
even for binary trees with an alphabet of size two, by reduéirgct Cover by 3-Sets (X3@f. [GJ79,
page 221]) into this decision problem. Moreover, Zhang and Jiang [2J94] showed that the largest common
subtree problem and the Tai edit problem is shown to be MAX SNP-hard, also even for binary trees with
an alphabet of size two, by reducifgaximum Bounded Covering by 3-SE@$AX 3SC-3 [Kan91] into
this optimization problem. This fact implies that the Tai edit problem does not have any polynomial-
time approximation scheme (PTAS), unlessN®, where a problem has a PTAS if the problem can be
approximated within a factor of 4 ¢ (for any constant > 0) in polynomial time.

Torselloet al. proposed an algorithm [THO3a] by reducing the problem of computing Tai distance
for unordered trees into thmaximum weighted clique probleim order to take advantage of a powerful
heuristics for approximation [BPS00]. Horeshal. developed an Aalgorithm [HMUO6] for unlabeled
unordered trees.

We summarize the computational complexity of the Tai edit problem for unordered tréaislen2.3
and the algorithms for Tai distance for unordered treékalsle 2.4

Table 2.3. Computational complexity of Tai edit problem for unordered trees

Reference Worst-case lower bound Remark

[2SS92] NP-complete even for binary trees with an alphabet of size two
[2J94] MAX SNP-hard i

Table 2.4. Algorithms for Tai distance for unordered trees

Reference Method Remark

[2SS92] dynamic programming O(nyng + £1!1344(£3 + d3)ny) time
[THO3a] reduction to maximum weighted clique problem approximation algorithm
[HMUO6] A* algorithm for unlabeled trees

n;: size of tre€T; for i € {1, 2}, ¢; = |leaves(;)| fori € {1,2}

32 Chapter 2. Approximate Tree Matching

2.5 Tree Mappings

Tai showed a fundamental correspondence betweenfithet ef a series of edit operations and a common
pattern shared in two trees [Tai79]. The common pattern is represented as a set of pairs of nodes called a
tree mappingoriginally called just anapping[Tai79]). Tai distance and the other variants are defined by
giving a condition of tree mappings as well as the operational ways. We refer to this static view of tree edit
distance by a class of tree mappings asdbelarative definitioror as thedeclarative semantics

Basically, a declarative definition of a tree edit distance measure makes it clearer and easier to study
mathematical properties of the measure. In fact, most algorithms for computing various tree edit distance
measures have been designed from the view of tree mappings, and the correctness of each algorithm also has
been proved mainly by verifying the correspondence between the algorithm and the declarative definition
of the edit distance measure.

In what follows, we first introduce a general form of tree mapping, and next show the declarative
definition of Tai distance by using tree mapping.

2.5.1 Tree Mapping based Distance

A tree mapping is a partial node-to-node correspondence between two trees.

Definition 2.36 (Tree Mapping) A tree mappingV/ from a treeS to a treel" is a set of pairs of nodes
M C V(S) X V(T) satisfyingsl =5, &t =ty for any (Sl, tl), (82, tz) € M.

We also say that a tree mappibgtweenS and T if there is no confusion. We denote byt(S,T) all
possible tree mappings betwegrandT’, and byM s we sometimes denote an element\df S, T').
For a tree mapping/ between two treeS§ andT’, we use the following notation:

M(s)=t if It € T'[(s,t) € M]fors e S,
M7Y(t)=s if 3s € S[(s,t) € M]fort e T,
MY ={seS|3teT|(st)e M},
M@ ={teT|3seS[(st)c M]}.

Given a cost functiod : (V(S)U{e}) x (V(T)U{e}) — R as shown in Eq.(2.1), the cost of a tree mapping
M is defined as follows:

costM) = > d(s,t)+ Y. ds,e)+ Y dled). (2.3)

(s,t)eM SEV(S)\M® teEV(T)\M®@

In this chapter, we introduce a variety of classes of tree mappings by imposing some restriction on tree
mappings, and define tree edit distance measures such as Tai distance, alignment distance and constrained
distance based on these classes of tree mappings. These classes are referred to as tfendyenbwk
need a general description for each class of tree mapping, and we refer to the tree r@appipging. Let
ME(S,T) denote the set of all possible tree mappings belonging to Elassween two treeS andT, i.e.

ME(S,T) = {M € M(S,T) | M is a tree mapping fron§ to T belonging to clas€}.

In what follows, we give a few important properties of tree mappings related to the notion of tree
mapping class.

Definition 2.37 (Class Hierarchy of Tree Mappings) A classC; of tree mappings is aubclasof a
classC, of tree mappings, denoted I6y C C,, if MC(S,T) € MC(S,T) holds for any two trees
andT'. Conversely, we say thé&p is asuperclas®f C; if C; C C,. In particular,C; is aproper subclass
of a class’,, denoted by, C Co, if C; C C, and M (S, T) € M (S, T) for some two tree$ andT’
hold. Conversely, we say théj is aproper superclassf Cy if C1 C Cb.

2.5. Tree Mappings 33

Definition 2.38 (Monotonicity of a Class of Tree Mappings)A classC of tree mappings ismonotonic
if the following holds:

VS, T € Z)YVM,M' € M(S,T))[M'CM AN Mec M°(S,T) = M e M(S,T)].

Definition 2.39 (Composition of Tree Mappings)Let R, S, andT be trees. For any two tree mappings
Mpgs € M(R,S)andMgr € M(S,T), thecompositiorof Mrgs and Mg is defined as follows:

Mgz o Mrst = {(r,t) € V(R) x V(T) | 3s € S[(r,5) € Mrs A (s,t) € Ms7] }.

Lemma 2.40 (Subadditivity of Tree Mapping Costs) Let R, S, andT be trees. If the cost function
d is a metric, then for any two tree mappingitrs € M(R,S) and Mgr € M(S,T), the following
holds.

costMsr o Mprs) < cost(Mrs) + costMsr).

Proof. For any (1, t1), (r2, t2) € Myz o My, the conditionr; = r, < t1 = t, holds due to Definition 2.36.
Then, we consider the cases for the nodes of each tree.

1. For any nodes € S, it suffices to consider the following four cases:
(@)s € Mrs® ands € Mgr®, (b) s ¢ Mps® ands € Mgr®,
(©)s € Mrs® ands ¢ Mgr®, (d) s ¢ Mps® ands ¢ Mgr®.
In any case, there exist two unique node pairs) € (V(R) U {e}) x V(S) and §,t) € V(S) x
(V(T) U {e}) associated witl. Sinced(r,t) < d(r, s) + d(s, t), the assertion holds in these cases.
2. Forany node € R, if r € Mps™, then there exists a unique node pairs) € Mps. Hence, it is
considered in the previous cases 1(a) and 1(c). Otherwisé/ 5™ holds, andi(r, €) is considered
both in cost{/rs o Mgr) and costl/rs). This factord(r, €) does not make any filerence between
cost(Mgsr o Mprg) and costl/rs) + costMs).
3. For any node € T, by symmetry, it is similar to the previous case.

Therefore, the assertion holds in any cases. |

We define two important properties of a class of tree mappings.

Definition 2.41 (Symmetricity of a Class of Tree Mappings)A classC of tree mappings isymmetric
if MC(S,T) = ME(T, S) holds for any two tree§ andT.

Definition 2.42 (Transitivity of a Class of Tree Mappings) Let R, S, andT be arbitrary trees. A class
C of tree mappings igansitiveif, for any two tree mappingd/zs € MC¢(R, S) andMgr € MC(S,T),
the composité\/s7 o Mgg is a tree mapping such thafz; € MC(R, T).

We introduce tree mapping based distance according to the class of tree mappings.

Definition 2.43 (C-Distance) Given a clasg of tree mappings, thé-distancebetween two treeS§ and
T is defined as follows:

DC(S,T)= min cost(M).
MeME(S,T)

We call this definition aleclarative definitiorof C-distance.

If a C-mappingM between two trees has the minimum cost, we éélan optimal C-mapping In
practical use, we often normalize distance as follows:

DC(S, T)

CS.1)= — =7
NDHS 1) = raxIsT Ty

34 Chapter 2. Approximate Tree Matching

Figure 2.10.Tai mapping

Proposition 2.44 (LoweyUpper Bound of C-Distance) Given two classe§; andC, of tree mappings,
if C1 is a subclass daf,, thenC;-distance is an upper bound @f-distance, i.e.

C1CC, = VS, T e 7[D%S,T)<DS,T)].
Proof. Itis obvious from Definition 2.37. |

Proposition 2.45 (Transitivity of C-Distance)
If a classC of tree mappings is transitive, théndistance is transitive.

Proof. Recall that we assume that the cost functibis a metric. LetR, S, andT be trees. Sinc€ is
transitive,M g7 o Mps belongs to clas€ of tree mappings for any/rs € MC€(R, S), Msr € MC(S,T),
andMgrr € MCE(R,T). SinceC is transitive, it holds thad/s o Mps € MC. Without loss of generality,
we may assume thadt/rs, Mg, and Mg are tree mappings with minimum costs. By Lemma 2.40 and
the definition ofC-distance, we have

DC(R, T) = cost(Mpr) < cost(Msr o Mps) < cost(Mprs) + cost(Msr) = DE(R, S) + DE(S, T).

2.5.2 Tai Mapping — Declarative Definition of Tai Distance

Tai proposed the following class of tree mappings for reducing the problem of computing the minimum cost
of edit scripts into the problem of computing the minimum cost of tree mappings [Tai79]. Tai formulated
tree edit distance in accordance with the paper by Wagner and Fisher [WF74] for string edit distance.

Definition 2.46 (Tai Mapping [Tai79]) A tree mappingV/ C V(S) x V(T) is said to be &ai mapping
if the following are satisfied for any{, t1), (s2, t2) € M.

1. sy =85 <= t1 =1to.
2. 81 < 8§ <= t1 < to.
3. s1 < s <= t; <ty (only for ordered trees).

Note that the first and second conditions are replacedayith s, < t1 < 1.
This class is indicated b§ = Tar. Then, byM™ (S, T'), we refer to the set of Tai mappings between
two treesS andT'.

Example 2.47 For two ordered treeS andT in Figure 2.1 M = {(s1, t1), (s4, t3), (6, te), (57, t0) } IS @
Tai mapping fromS to 7. The Tai mapping is depicted by dashed lines. For two ordered $feesl T’
in Figure 2.11 M = {(s1, t2), (s2, t3), (3, t4) } iS not a Tai mapping sinck < t, does not hold although
s3 < s1 holds. |

2.5. Tree Mappings 35

Figure 2.11.Non-Tai mapping

Proposition 2.48 (Transitivity of Tai Mapping, Lemma 3.1(1) in [Tai79]) Tai mapping is transitive.

Proof. Let R, S andT be trees. Consider two Tai mappintikzs € M™(R, S) andMgy € M™(S,T).
For any (1,t1), (r2,t2) € Mgt o Mgg, there existsy, s, € S such that €1, s1), (r2, s2) € Mpgg and
(s1,11), (s2,t2) € Mgsr. By the definition of Tai mappings, the following hold:

1. ri=ry& s1=spands; = sp &ty = o,

2. 11 <pr2$ s1<gsxandsy <g sy <ty <7 iy,

3. 11 g 2 & 81 =Xg sz andsy <g s < t1 <7 to (only for ordered trees).

Therefore Mg o Mpg is also a Tai mapping fromk to 7T i

In the following lemma, we show an important correspondence between edit scripts and Tai mappings.

Lemma 2.49 (Edit Script and Tai Mapping) LetS andT be two trees. The following two properties
hold between the costs of edit scripts and Tai mappings.

1. For any Tai mapping/ € M(S,T), there exists an edit scrigf € £(S,T) such that cosf{) =
cost(M).

2. For any edit scrip? = (e1,...,e,) € E(S,T), there exists a Tai mappiny € M(S,T) such
that costf) < cost(M).

Proof. Without loss of generality, for any Tai mappiddg € M(S,T), we assume (roaf{), root(T")) € M

(cf. Remark 2.2).

1. From the definition of the cost of a tree mapping in Eq.(2.3), we can construct a corresponding edit script
FE with the same cost al/ consisting of:

¢ the replacement of by ¢ for (s, t) € M,
e the deletion ofs from S for s € V(S) \ M®,
e the insertion of into S for t € V(T) \ M®.

2. Let an edit scriptt = (e, ..., e,) € E(S,T). Then, there exists a series of tréés, . .., T,,) such that
To = S, T, =T, and thei-th edit operatiore; = (s; — t;) transformsl;_; into T; fori € {1,...,n}. We
prove the lemma by induction on

If n = 0, the edit scriptEl = () corresponds to the Tai mappidg = {(s,s) | s € S}, i.e. an
isomorphic mapping fron% to S. Thus, we have cost) = cost(\/) = 0.

If n =1, the cost of edit scripf = ((¢ — t)) exactly corresponds to a Tai mappiff. Therefore,
cost(F) = cost(M) = d(t,t').

If n > 2, by the induction hypothesis there exists a Tai mapgifigfrom T to 7, _1 such that
cost(M;) < cost(es,...,e,—1)). Consider the transformatidfi,_, £, Ty, via an edit operation,,
(t — t'), where eithert or ¢’ (not both) can be a null node Then, there exists a Tai mappidd, =
M’ U {(¢,t")} from T,,_;1 to T,, such thatM’ is an isomorphic mapping frof,, _; to 7,, except for a
difference by theféect of {(¢,t')}. Hence, cost{/,) = d(t,t). Now we have a Tai mappinty/ = M, o M;
from S to T'. By Lemma 2.40, the following holds.

cost(M) < cost(My) + cost(My) < cost(ey, ..., en—1)) +d(t,t') = costE).

It follows by induction that the assertion holds for all edit scripts |

36 Chapter 2. Approximate Tree Matching

By using Lemma 2.49, Tai showed that the tree edit distance in Definition 2.32 is reduced into the
cost minimization problem of tree mappings.

Theorem 2.50 (Theorem 3.1 in [Tai79])For two treesS andT’, the following holds.

D™(S,T)= min cost)= min cost(\).
() Ee€&(S,T) (E) MeMTAl(SvT) M)

Proof. Straightforward from Lemma 2.49. 1

This theorem bridges the gap between the operational and declarative definitions of Tai distance. If the cost
of a Tai mappingV/ is minimum, this mappind/ is referred to as aoptimal Tai mapping Note that Tai
mapping is a natural representation of root-editable operations in Remark 2.2.

By using the transitivity of Tai mappings, Tai showed that Tai distance is a metric.

Corollary 2.51 (Metricity of Tai Distance) Tai distance is a metric.

Proof. Since there exists an isomorphic mapping between the same two trees, and Tai mapping is symmet-
ric, then it is obvious that for any treésandT’,

D™(T,T)=0 and D™(S,T) = D™(T, 5).

Since tree mapping is subadditive by Lemma 2.40, and Tai mapping is transitive by Proposition 2.48, it
follows from Proposition 2.45 and Theorem 2.50 that Tai distance is transitive, i.e. for any®tr8eand
T, we have

D™(R,T) < D™(R, S) + D™(S, T).

Therefore, Tai distance is a metric. |

2.5.3 Approximate Common Subforest Problem

There is an alternative view in defining Tai distance as in the string case in Section 2.2.3. In Definition 2.32,
for given two trees, we apply all edit operations to the first tree to obtain the second. In the alternative
view, we use onlyeplacementanddeletionsas the elementary edit operations, and define the Tai distance
between two trees as the minimum cost of edit operations to transform two trees into a common third forest,
i.e. we redefine€(S,T) as the all possible edit operations to obtain a third common forest by applying
replacements and deletions to two tr¢eandT'. In other words, this problem is to find @pproximate
common subforesthared by two trees with the minimum cost of edit operations withrartions In this
case, we permit the edit operation with edit signature e. This operation changes nothing and is called
anidentity edit operation

The problem of computing the edit distance between two trees along with an approximate common
subforest of the minimum cost of edit operations is calledihygroximate common subforest probldiris
easy to show that the approximate common subforest problem is equivalent to the tree edit problem in the
computation of tree edit distance since any deletion of a nddem the second tree has its complementary
operation, the insertion af into the first tree with the edit signatuge— .

From the viewpoint of Tai mapping, this problem is clear. For a Tai mappinigetween two treeS§
andT’, approximate common subforests are bsh/ (] andT[A/@)]. From the definition of Tai mapping,
these two forests are isomorphic if thifeet of replacements are ignored. If replacements are not used,
S[M®] andT[MP)] are isomorphic.

Example 2.52 Figure 2.12shows a Tai mapping betweéhand7’, and a common subforest pattdriof
SandT. i

2.6. Variants of The Tree Edit Problem 37

VAN

Figure 2.12. Approximate Common Subforest

Table 2.5. Some classes of approximate tree matching

Reference Tree mapping Distance Clas€ Section
[Tai79] Tai Tar §2.4
[JWZ95] alignable/ alignment An §2.7
[TT88] structure-preserving SP §2.8.1
[OT88, Tan84] strongly structure-preserving °SP §2.8.2
[Lu79] Lu Lu §2.8.3
[Zha95] constrained &r §2.8.4
[Ric97] structure-respecting SR §2.8.5
[LSTO01] less-constrained G* §2.8.6
[Sel77] top-down (LCST) e §2.9.1
[Val01] bottom-up Br §2.9.2

2.6 Variants of The Tree Edit Problem

A variety of tree edit distance measures have been proposed other than Tai distance. Most of them are
defined by imposing a certain restriction on the edit operations or the tree mappings of Tai distance.

There are two major motivations for restricting Tai mapping. The first is to improve the computation
cost of the edit problem. The second is to tailor a tree mapping for specific applications, since Tai mapping
may be too general for certain applications such as comparing parse trees, taxonomies, and more structure
sensitive distance measures are required in these applications. In the following sections, we give a cursory
review on some of important classes of tree mappings in tree edit distance, and related problems. Once a
class definition of tree mappings is given, we can define the distance measure by using the condition based
on Definition 2.43. Then, we use mainly a declarative definition if it is known.

Table 2.5supplies terms for classes of approximate tree matching based on the optimization of edit
scripts or tree mappings. Some of the terms are slightly modified from the originals due to uniformity.

Before reviewing a variety classes of approximate tree matching, we define two representative cost
functions commonly used in various distance measures.

2.6.1 Unit Costs

If the tree edit distance between two trees is definath@niumber of edit operatiorie transform one tree
into another, the cost functiahis given by

o i) =),
d(x’y)_{l if 1(z) # I(y).

38 Chapter 2. Approximate Tree Matching

Table 2.6. Computational complexity of alignment problem

Degree unbounded Degree bounded
Trees Reference
Time Space Time Space
[JWng] O(nlnz(dl + dz)z) O(Tllng(dl + dz)) O(TLZ) O(TLZ)

[WZOS] O(’I’L%nz(dl + dz)z) O((Iognl)nz(dl + dz)dl) O(n3) O(n |Og n)

ordered \\705] Ofninalds + do)?) O((logni)na(dy + do)ds) O(m2) O(nlogn)
[Jan03] Ok?n(logn + d®)) O(k?n logn)
unordered [JwZz95] MAX SNP-hard polynomial

[FAO06] (unit costs, degree and alphabet size bounded) O(y%n)
n;: size of treeT; for ¢ € {1, 2}, and assume that; < np andn = ny, d; = deg(l;) for: € {1, 2}.
k: fixed upper bound of the number of inserted gap symbols.
K fixed upper bound of the unit-cost alignment distance.
~: parameter determined hi (e.g.~ < 4.45 for unordered binary trees).
+For unordered binary trees, @) time and space.

We refer to theC-distance based on the cost functi®msC-distance withunit costsor simply unit-cost
C-distance, and we denoted WBY{ (S, T)) the unit-costC-distance betweels and7. The cost of a tree
mappingM between two tree§ andT is simplified as follows:

costM) = [{(z,y) € M |z # y} +[V(S)\ MW| + [V(T)\ M®)|
= {(z,y) € M |z £y} + S| +|T| -2 |M|.

2.6.2 Largest Common Subforest Patterns

On the other hand, if the tree edit distance between two trees is defitieel msmber of edit operatiorie
transform one tree into anotherthout replacementshe cost functionl is given by

0 ifiz) =),
d(z,y) =<1 if I(x) £ I(y) and {(z) = *-"or I(y) = “-"),
oo otherwise (label replacement)

As in the case of strings (Section 2.2.3), if we need just the distance value, it is enough to let the cost of
replacement be more than or equal to 2. By computing’tdestance between two treésand?” based on

the cost functionl, we can find dargest common subforest pattesh.S andT'. (Tai refers to it as éargest
common substructuteetweenS andT [Tai79].) We refer to the distance &@sdistance withLCS costor

simply LCS-cost-distance, and we denoted Bf.(S, T') the LCS-cost’-distance betweefi andT.

2.7 Alignment of Trees and Alignment Distance

Thealignment of treesvas introduced by Jiangt al. [JWZ95], as a natural extension of the alignment of
strings, in search of better comparison methods for RNA secondary structures. While the Tai edit problem
can be regarded as the problem of finding an approximate common subforest of two trees, the alignment of
trees can be regarded as the problem of finding@proximate common supertreétwo trees.

We summarize the proposed algorithms and computational complexities for computing alignment of
trees inTable 2.6

2.7.1 Operational Definitions

The definition of alignment of trees was given in an operational way [JWZ95] as follows.

Definition 2.53 (Alignment of Trees [JWZ95]) An alignmentof two treesS andT is obtained by the
following two steps:

2.7. Alignment of Trees and Alignment Distance 39

1. Insert new nodes with gap symbot™into S and7 so that the following two conditions are
satisfied:

(i) two resulting trees$’ andT” are isomorphic if labels are ignored, andgdeie an isomorphic
mapping fromsS’ to 7"

(ii)y forany nodes € S’ labeled with a gap symbol, the nodés) € T” is not labeled with a gap
symbol.

2. Collect the pairs of nodes as follows:
A={(s,0(s) e V(S) x V(T") | s € §'}.

We refer toA as an alignment of and7'. The tree obtained by relabeling all nodesSihwith
((s), U(¢(s))) for s € S’ is called araligned tree

The cost of an alignmem is defined as the sum of the costs of all pairs of aligned nodes :

costd) = > d(s,)= > di(i(s), I(t)).

(s,t)eA (s,t)eA

An optimal alignmenis an alignment that minimizes the cost over all possible alignmentsalign-
ment distancés the cost of an optimal alignment. We denote the set of all possible alignments between
two treesS andT by A(S,T). Then, thealignment distancdetween two trees andT is given as
follows.
DAY(S,T) = min _cost().
(5,T) acmin @A)

The problem of computing an optimal alignment or alignment distance is referred toagytiraent
problemin trees.

Tree Mapping for Alignment of Trees. In Definition 2.53, alignment distance is not defined as the min-
imum cost of tree mappings as in the case of Tai distance. We refer to the class of tree mappings for
determining alignment distance afignable mappings For any alignmentd € A(S,T), an alignable
mappingM is given by

M ={(s,t) € V(S) x V(T) | (s,t) € A}.

The explicit condition of alignable mappings had not been identified for ten years sinceefiahdirst
introduced the notion of alignment of trees in an operational way [JWZ95]. In Section 4.6, we reveal the
condition of alignable mappings.

Example 2.54 Consider the unit-cost alignment distance between two orderedi@ed?” in Figure 2.13
Then, we havd?™(S, T) = 4 since the minimum cost is computed by

di(a,a) + d;(b, —) + di(c,c) + di(—,) + d;(d, d) + d;(—, e) + di(e, —) = 4.

Figure 2.14eft) shows the alignable mapping corresponding to the alignment in Figure 2.13, and by over-
laying the node pairs in the mapping we obtain the same aligned tree Figure 2.14(right) as in Figure 2.13.

An alignment of two trees is not uniquely determin&eure 2.15shows another alignable mapping
betweenS andT', and its aligned tree.

Figure 2.1§left) shows a Tai mapping betweéhandT'. This mapping is not an alignable mapping
since by overlaying the node pairs in the mapping we obtain an acyclic directed graph in Figure 2.16(right),
and it is not a tree. It is obvious from this observation that alignable mappings are in a proper subclass of
Tai mappings. 1

Alignment Problem as a Restricted Tree Edit Problem

The alignment problem is viewed as a restricted tree edit problem in which all the insertions precede all the
deletions. In the alignment problem for strings, the set of edit operations gives the same distance regardless
of the order of operations, while the order may cause a lifgrdince in the tree edit problem.

40 Chapter 2. Approximate Tree Matching

S inserting

gaps
-

aligned tree

T inserting
gaps

Figure 2.15. Another alignable mapping and its aligned tree

Example 2.55 For two treesS and7 in Figure 2.17, we assume unit costs. Then, the alignment problem
is solved by applying all insertions before deletions, and an optimal edit script is

E=(e—fe—eer—egb—e).

There is no shorter path betweéhandT' under the restriction. On the other hand, if there is no such
restriction, then we have a shorter path with an optimal edit script

E=({br—c¢ge—f

as shown irFigure 2.18 1

2.7.2 Approximate Common Supertree Problem

There is yet another alternative view of the alignment problem. First, let us define the notion of supertree.
For a tre€l’, asupertreeof T' is a tree obtained by inserting an arbitrary number of nodeslinto

2.7. Alignment of Trees and Alignment Distance 41

aligned graph
aea

b f

cec ded eee

Insertion phase Deletion phase

Figure 2.17.Alignment problem as an edit problem

Figure 2.18.Tai edit problem

In the alternative view, we use onlgplacementandinsertionsas the elementary edit operations, and
define the alignment distance as the minimum cost of edit operations to transform two trees into a common
third tree. In other words, this problem is to find an approximate common supertree shared by two trees
with the minimum cost of edit operations withadgletions We permit the identity edit operation as in the
approximate common subtree problem. For example, in Figure 2.15, the tree to the right is obtained from
two treeS andT" by inserting two nodes respectively.

The problem of computing the alignment distance between two trees along with an approximate
common supertree of the minimum cost of edit operations is calledppeoximate common supertree
problem

For strings, the approximate commsuapersequengaroblem is equivalent to the approximate com-
monsubsequencgeroblem. For trees, both are, howeveffelient as already seen.

2.7.3 Algorithms for Ordered Trees

For two treesl; andT5, we setn = max{|T1|,|T>|} andd = max{deg(1),deg(>)}. Jianget al. first
proposed an Ofd?)-time and Of2d?)-space algorithm [JWZ95] for computing alignment distance for
ordered trees. Later, Wang and Zhao [WZ03] improved the space complexity by sacrificing the time com-
plexity for the case ofl < n as often seen in RNA secondary structures. The algorithm runsrifd€)(

time and Of.logn - d%) space. Recently, Wang and Zhao achieved a further improvement by proposing a
new algorithm which runs in @€d?) time and Of logn - d?) space.

Jansson and Lingas proposefixed-parameter algorithrfL03, Jan03] for ordered trees. The algo-
rithm runs in Og?n(logn + d®)) time for a fixed upper bound of the number of inserted nodes labeled with
gap symbols:, i.e. this algorithm returns the alignment distance between given two trees if there exists an
optimal alignment with at most nodes labeled with gap symbols.

42 Chapter 2. Approximate Tree Matching

D(0,0) =0
D(F,0) = Y Dr(T.0), DO, F)= > Dr(0,T)
TeF TeF
Dr(u(F), 0) = D(F, 0) + d(v, €), Dy (0, v(F)) = D(0, F) + d(e, v)

Dr(vi(F1), v2(F2)) =

D (0, va(F2)) + jngipz{DT(Ul(Fl)y T)—Dr(®,7)}, (er v2)

(
. . (2.4a)
min ¢ Dr(vi(F1),0) + Jmin {Dr(T,v2(F2)) — Dr(T,0)}, (v1+—€)
1
D(F1, F2) + d(vy, v2), (v1 = v2)

D(F1, F> @ To) + Dy (11, 0)

i D(Fy e T1, F») + Dy (0, T%)
D(Fl o, Fre T2) =min D(Fl, FZ) + DT(Tl, Tz) (24b)

D'(Fye Ty, Fs e T5)
D'(FLevi(F]), Faeva(F3)=D'(T1e---eTi", Ty e---0Ty) =

] min {D(Ty e e T F) +D(T{ e o T{", F7)} +de, vz) (2.40)

Min {D(Fy, T3 e -0 Ty) + D(F], T3 @ -~ 0 T3} + d(vy, €)

Figure 2.19.Recurrences for computing alignment distance for ordered trees

Jiang-Wang-Zhang’s Algorithm

The algorithm for computing alignment distance [JWZ95] for ordered trees was proposed based on the
recurrences ifrigure 2.19 where D1, F3) denotes the alignment distance between two forEsgnd F5,

and Dr (131, T>) denotes the alignment distance between two tiéedT>. Figure 2.20andFigure 2.21
illustrate the intuitive meanings of Eq.(2.4a) and Eq.(2.4c) respectively. In Algorithm 2.4, we show the
algorithm for computing alignment distance.

D (0, v2(F2)) — Dr(0,T) Dr(vi(F1),T)
v2(F2) v1(F1) v (Fy)

A

Figure 2.20.D7(0, v2(F2)) + ngip{DT(vl(Fl), T)—Dr(0,T)} in Eq.(2.4a)

Fy F.
Figure 2.21.D(T} e --- o T; ™, F5) + D(T} o - - - Ty™, F3) in EQ.(2.4C)

Fy

An optimal alignable mapping (optimal alignment) can be basically computed by tracing back the
resulting arrays D and pobtained by ReeArign and FORESTALIGN.

2.7. Alignment of Trees and Alignment Distance 43

Algorithm 2.4 Alignment distance for ordered trees
procedure TReeALiGN(T7, 1%)
D@®,0) 0
foreachv € T3 in postordeido
let 7 be a forest such th&t (v) = v(F1)
D(Fl, @) — ZTGFl DT(T7 @)
DT(U(F‘]_)7 @) — D(F]_, @) + d(’U7 8)
foreachv € V(13) in postordeido
let % be a forest such thab(v) = v(F5)
D(®7 FZ) — ETGFZ DT(@v T)
Dr (0, v(F2)) < D(0, F2) + d(e, v)
for v1 € T7 in postordeido
let F; =T e --- o T{™ be a forest such tha (v1) = v1(Fy)
for v, € T in postorderdo
let F, = T3 e --- o T3" be a forest such thdb(vy) = va(F2)
for i « 1tom do
FORESTALIGN(TY @ - - - ¢ T™ |)
for j < 1tondo
FORESTALIGN(F, T3 @ - - - © TJ")
Dr(0, v2(F2)) + T”éipz{DT(vl(ﬂ% T)-Dr(®,7)}
Dr(vi(F1), v2(F2)) = min ¢ Dr(vi(F1), 0) + Trréi?l{DT(T7 v2(F2)) — Dr(T,0)}

D(F1, F2) + d(v1,v2)

return D (11, T3)
end

procedure FoReSTALIGN(T L @ - - - ¢ T/, T2 o - - - @ T})
for i — 1tomdo
D(Ife:--eT},0) —D(I}e- - eT;*0)+Dr(I},0)
for i — 1ton do
D0, T5e---0T3) «— D0, T}e---o Tzifl) +Dr(0,7%)
for i — 1tomdo
for j «— 1tondo
let F, e v () =Tt e---o T} fork € {1,2}
D(Tllo--'oTli,Tzlo-uoTZj):
D(Tle---eTi 1 T)e---eTJ)+Dr(T},0)
D(Tle---oTiTie---eTi 1)+ Dp(0),T§)
mind D@l ITffl,Tzlkt.l. e Ty +kDT(T{,T2?) /
12’!}!21_{D(T1 o o F)+ DIV e--- 0Ty, F3)} +d(e,v0)

_min {D(Fy, T}e--- e TE 1)+ D(F], T5 o --- ¢ TJ)} + d(uv1,€)
SRY)
end

We, however, need to take notice that Jiang-Wang-Zhang'’s algorithm is designed for computing just
one optimal alignable mapping even if there exists more than one. Although Zhang-Shasha’s algorithm for
Tai distance also computes just one optimal Tai mapping, the resulting arrays implicitly contain all possible
optimal Tai mappings. Hence, we can enumerate all the possible optimal Tai mappings from the resulting
arrays by traceback.

On the other hand, the resulting arrays by Jiang-Wang-Zhang'’s algorithm excludes some possible
alignable mappings in the first place since these excluded mappings are always replaceable with alternative
mappings with the same costs from the viewpoint of cost optimization. Therefore, in a precise sense, the
recurrences used in Jiang-Wang-Zhang'’s algorithm do not mathematically correspond to the definition of
alignment of trees, and it computes alignment distance in a subclass of alignable mappings. This is a slight

difference in recurrences or implementation, but may causeaetice in the definition of tree mappings
(See Section 4.8.1).

44 Chapter 2. Approximate Tree Matching

We do not enter into the detail of the correctness of all the recurrences in Figure 2.19. However,
we sketch the proof of the correctness of Eq.(2.4a) since the exclusiveness of a tree mapping arises from
Eq.(2.4a).

Proof of the correctness of Eq.(2.4a) [JWZ95, Lemma 2]Consider an aligned tree of an optimal align-
mentA of 17 = v1(F1) andTy = v(F3). We assume that

Ay ={x ¢ T | (z,y) € Aforsomey € T»}
Ay ={yeTo| (z,y) € Aforsomer € Ty}

It suffices to consider the following four cases.

1. (v1,v2) € A: The nodes; andwv, are aligned. Hence, the rest@f{(F1) andv,(F3), i.e. two forests
F1 andF5, need to be aligned, i.e.

Dr(v1(F1), va(F2)) = D(F1, F2) + d(v1, v2).

2. (v, wy) € A for somew, € Ay, and (g, v2) € A for somew; € A;: Recall thatw; andw, are
labeled with the same gap symbol. Hence, due to the metriciytbie cost cannot be better than the
case 1, i.ed;(I(v1), l(v2)) < di(I(v1), —)+d;(—, I(v2)). Hence, we may ignore this case for computing
the minimum cost.

3. (v1,w7) € A for somew, € Ay, and (w1, v2) ¢ A for anyw; € A;: The root of the aligned tree is
obtained by aligning; andw,, and the node, must be aligned with a node ifi € F3;. Hence,

Dr(vi(F1), v2(F2)) = Dr(vi(F1), 0) + T"T;ipl{DT(T, v2(F2)) — Dp(T, 0)}.

4. (w1,v72) € Afor somew; € Az, and @1, wy) ¢ A for anyw, € A,: Symmetric to the case 3. |

From this proof, it is clear that the case 3 is ignored in the recurrences in Figure 2.13. If this case
is completely excluded, in a precise sense, the recurrences in Figure 2.13 end up with mathematically
mismatching the definition of alignment of trees. In addition, this proof assumes the metricity of the cost
functiond (we see in Corollary 2.59 that alignment distance is not a metric evéisifa metric), while
Zhang-Shasha’s algorithm does not assume it. By adding the case 3 to Eq.(2.4a), we have the following
recurrence mathematically equivalent to the definition of alignable mappings.

Dr(0, va2(F2)) + jogigz{DT(Ul(Fl)a T) - Dr(0,T)}
Dr(va(F1),0) + qtgigl{DT(Tv v2(F2)) — D7 (T, 0)}
D(F1, F?) + d(vg,v2)

|D(F},) + d(vy,) + d(e, v5) |

Dr(v1(F1), v2(F2)) = min (2.5)

For enumerating all the alignments between two trees, we need to use this recurrence, or implement some
supplementary procedure in traceback.

Example 2.56 We assume the following cost function:

0 i i(x) = U(y),
dlz,y) =<1 ifi(z)#I(y) and {(z) = “-"or I(y) = “-"),
3 otherwise (label replacement)

There are two possibilities of optimal alignable mappings as shown in Figure 2.19(a) and (b). Jiang-Wang-
Zhang'’s algorithm, however, does not consider the case of (b). 1

Complexity. We here estimate the time complexity of Jiang-Wang-Zhang’s algorithmlLaehd 7>, be
two given trees. For each pair of nodgse 71 andwv, € T3, the procedure drRESTALIGN ruNns in

O (|ch@y)| - [ch(vs)] - (Ich@a)] + [ch(uy)|)) time,

and then the proceduredeALIGN runs in

0 (|ch(vl)\ - [ch@2)] - (Ich(ey)| + |ch(v2)|)2) time.

2.7. Alignment of Trees and Alignment Distance 45

eb ___ed

be cd de éb e be c

(a) Case 1 obtained by JWZ'’s algorithm (b) Case 2 excluded by JWZ's algorithm

Figure 2.22. Two optimal alignable mappings

Therefore, the time complexity of Algorithm 2.4 is

> > 0(leh@]- lehta)l - (eh@)] + [ch(e2)])?)

v1E€T1 v2€T3

<> N O<|ch(v1)| lch@2)] - (deg(ll)+deg(Fz))2)

v1€T1 v2€T>

=0 ((> |Ch(vl)\) : (> |ch(vz)|) - (deg () + deg(rz))z)

v1€TL v2€T>

< O(|11] - |7z - (deg(ry) + deg(r2)”)

Amalgamation of trees. It seems that alignment of trees can be applied to amalgamating two trees into
one supertree based on the similarity. However, we have yet to solve the problem of determining one aligned
tree out of more than one candidate. Itis obvious that the way of amalgamation from an obtained alignment
is not unique even for strings. The amalgamation of trees has, however, a more complex ambiguity than
strings as shown in the following example.

Example 2.57 Consider two treeS and7’, and an alignment depicted by dashed lineskigure 2.23 By
overlaying pairs of nodes id with preserving any order i andT’, we have two possible amalgamations

R, anng. |
S T R, R,
a a a
b b b
ce- c d C d

Figure 2.23.Two aligned trees obtained by using the same alignment

2.7.4 Algorithms for Unordered Trees

Jianget al. proved that the alignment problem for unordered trees is MAX SNP-hard if either of given
two trees has arbitrary degrees [JWZ95]. Jiahgl. [JWZ95] also presented a polynomial-time algorithm
for unordered trees with bounded degree (the degree of a node is defined as the number of its children)
by giving the same structure of recurrences in Figure 2.19. In particular, for unordered binary trees, an
O(n1ny)-time and -space algorithm was shown in [JWZ95], wheréor i € {1, 2} is the size of tred;.

Fukagawa and Akutsu proposedized-parameter algorithrfFAO6] for unit-cost alignment of un-
ordered trees with bounded degree and a bounded size alphabet. This algorithm ruffs:iri@e, where
n = max{|Ty|, |T>|} for given two trees; andT, v is a constant determined by maeg((}), deg()},
andk is a fixed upper bound of the number of inserted nodes labeled with gap symbols.

46 Chapter 2. Approximate Tree Matching

2.7.5 Alignable Mappings

Even without the explicit condition of alignable mappings, the following important property is known. By
AL~ we denote the class of alignable mapping. The following proposition leads to the fact that the alignment
distance isot a metric.

Proposition 2.58 Alignable mapping is not transitive.

Proof. We show this proposition by a counterexample to transitivity. For tfeeS, andT’, let Mrs €
MANR, S), Mg € MAXN(S,T) be two alignable mappings. As shownFRigure 2.24 althoughMprs
and Mgt are alignable mappings, the compositgr o Mrs € M(R,T) is not alignable. Since the
composite of two alignable mappings is not necessarily alignable, alignable mapping is not transifive.

R T

Mgt

Figure 2.24.Counterexample to transitivity in alignable mappings

Although this intransitivity does not necessarily imply that alignable distance is not a metric, we
immediately have the following corollary by using the same counterexample.

Corollary 2.59 Alignable distance is not a metric.

Proof. See the following counterexample. 1

Example 2.60 We assume unit costs. For treBs .S andT, consider thre@ptimal alignable mappings
Mgs € MAN(R, S), Mgy € MAYN(S, T), and Mgy € MAXN(S, T) as shown irFigure 2.25 Then, we
have
DY™(R,T)=4, D(R,S)=1, DM(S,T)=1
Hence,
D™ (R, T) > DI™(R, S) + D(S, T).
It follows that alignable distance is not a metric.

//\
N“Q{’S\
OV s

Mgy

Figure 2.25.Non-metricity of alignable distance

For Tai distance, we have

DR, T)=2, DR,S) =1 DS, T)=1,

2.8. Structure Sensitive Distance 47

since Tai distance is a metric. |

2.8 Structure Sensitive Distance

Tai distance and alignment distance are primarily defined in an operational way by using edit operations.

In these two distance measures, the notion of tree mapping is rather used for characterizing the distance
measures. In contrast, some distance measures between trees are primarily defined based on Definition 2.43
by giving subclass definitions of Tai mappings without explicit definitions of how to apply edit operations

to trees. These classes consider not merely node-to-node mappings but also subtree-to-subtree mappings
by tree mappings. In this section, we show these classes of tree mappings, and related distance measures.
We summarize the complexities of these algorithm$ahle 2.7.

Table 2.7. Computational complexity of structure sensitive distance problems

Trees Class Reference Time Space
SP structure-preserving [TT88] O(ninaly) O(niny)
SP strongly structure-preserving [Tan84] 1A02) O(niny)
Lu Lu [Lu79] O(niny) O(niny)
ordered SR structure-respecting [Ric97] O(minadida)t O(dihiny)tt
Cst constrained [Zha95] Ofu1ny) O(niny)
Cst constrained [WZ05] O(n1ny) O((logni)ny)*
Cst’ less-constrained [LSTO1] O(uinodidid)
Cst constrained [Zha96] OQina2dlogd) O(niny)
unordered &r* less-constrained [LSTO1] MAX SNP-hardf
Lu Lu [AYO +03] O(’nj_nz)i]‘ti O(nlnz)

Fori € {1,2}, n;: size of tre€T;, h; = dep(l3), ¢; = |leaves(y)|, d; = deg(l3), d = dy + d2
TSP-distance is asymmetric w.rf; and7>.
1The algorithm for SR-distance is exactly the same as the algorithmsfediStance except for the complexity estimation.
t1For the computation of an optimal SR-mappingn@{,) space is required.
11An optimal Gr-mapping can also be computed with this space complexity.
t171In fact, a more negative result is proven. There is no absolute polynomial-time approximation wiéss P
+11This algorithm assumes degree-bounded trees.

2.8.1 Structure-Preserving Distance

Tanaka and Tanaka introduced a subclass of Tai mapping [TT82, Tan93, TT88, Tan95] by restricting the
condition of Tai mapping. It was probably the first attempt at defining a distance measure between two trees
by considering tree images mapped by a tree mapping.

Since the original definition of structure-preserving mapping is a slightly verbose, we modify the
representation of the definition without changing the essential formalization.

The node of the rightmost leaf of a complete subtre@ oboted att € T is denoted byl (¢). Let M
be a tree mapping frorfi to T'. Fors € .S, we define theoot imageof s underM as follows:

Rur(s)f lca{M(z) €T |x<gs}) if{xecMD|zx<gs}#0,

S =
M L (undefined) otherwise.
Note that R;(s) may not be well-defined for somee S. (If Ry(s) # L, we say that R (s) is well-
defined fors.) For a nodes € S, we refer to the complete subtree rooted at(R) as the image of(s)
underM. The structure-preserving mapping is represented as follows.

T Ras(s) is in effect the same as(s) in [TT82, TT88].

48 Chapter 2. Approximate Tree Matching

Definition 2.61 (Structure-Preserving Mapping [TT82, Tan93, TT88, Tan95])
For two ordered treeS andT’, a Tai mappingV/ from S to 7' is structure-preservingf the following
condition is satisfied:

Vs1,82 €S [R]w(sl) # 1L A Ru(s2) # L = [rl(s1) 95 s2 <= rl(Ras(s1)) <r RM(SZ)]]-

This definition uses a property of left-to-right preorder such th@k(t)) = {z € T | t <7 = <r rl(t)} for
any node € T'. The definition implies that “two subtre€gs;) andS(s,) are isolated (i.e. not overlapped)
if and only if two subtree§’(Ry;(s1)) andT'(Ry;(s2)) are isolated for anyy, s, € S.”

Remark 2.3 Note that the original definition of structure-preserving mapping was incomplete in [TT82]
(in Japanese) and [TT88] (in English). It was, later, corrected by adding the condiiom,), (j1, j2) €

MTiy € An(iz) < j1 € An(j2)] to the definition in [TT82] or [TT88]. The notes [Tan93] and [Tan95] are
complementary remarks of [TT82] (in Japanese), and [TT88] (in English) respectively for the correction.

Structure-preserving mapping & isolated-subtree or constrained tree mappingThe idea of structure-
preserving mapping has been widely prevailing due to its importance since it was proposed. But, the slightly
complicated formulation of this idea has been occasionally led to a misunderstanding of the structure-
preserving mapping. For example, [WZ01] and [Val01] regard the structure-preserving mapping and the
constrained mapping [Zha95] as the same class of tree mappings although boffeazatdi

Example 2.62 Consider a tree mappinyl = {(ss, t4), (s6, t7), (511, t11), (513, t12)} between two trees§
andT as shown irFigure 2.26 Now we focus on two nodes, s1g € S. For the subtree rooted at € S,
two nodes are included /@, i.e.

V(S(s2)) N MW = {s5, s6}.
Therefore, the root image ef underM is
Ras(s2) = M(ss) - M(se) = ta-1t7 = t2.
For s10, we have R;(s10) = t10. The shaded subtre€s,) and.S(s10) are isolated from each other, and
the images of these subtrees undlér7'(t,) andT'(¢10), are also isolated. In the same way, we can confirm
that, for any two nodess, z, € S, if the complete subtrees rootedigtandzx, are isolated from each other,

then the images of these subtrees undeare also isolated. Hencé/ is a structure-preserving mapping.
On the other hand, consider a tree mapplig= {(ss, t4), (s, t9), (s11, t11), (813, t12)} between two trees

Figure 2.26. Structure-preserving mapping

S andT as shown irFigure 2.27. Two isolated subtree$(s,) andS(s10) have the overlapped imag@$t,)
andT'(t10) underM’. Hence, M’ is not a structure-preserving mapping. 1

2.8. Structure Sensitive Distance 49

RM’(SZI)_,, e

.. Ry (s10)

Figure 2.27.Non-structure-preserving mapping

Proposition 2.63 (Asymmetricity of Structure-Preserving Mapping)
The structure-preserving mapping is asymmetric.

Proof. Consider a tree mappintf/sr from S to T' as shown irFigure 2.28a). It is easy to confirm that
Mgt is a structure-preserving mapping fraio 7. On the other hand, consider a tree mapgifigs from

S o Rugly

(b) Non structure-preserving mapping frdmto S

Figure 2.28. Asymmetricity of structure-preserving mapping

T to S in Figure 2.28(b). Although two subtre&%t,) and7'(ts) are isolated from each other, the images of
these two subtrees und&frg are overlapped. Hence, the tree mappldgs is not a structure-preserving
mapping. 1

It is straightforward from Proposition 2.63 that the structure-preserving distance is not a metric. Also,
it is easy to see that the structure-preserving mapping is monotonic and transitive.

Tanaka and Tanaka proposed an algorithm for computing structure-preserving distance [TT88], which
runs in O(Ty| - |7>| - [leaves(?)|) time and O(T3] - |7%|) space based on the following recurrences.

Structure-respecting mapping does not exactly correspond to the algorithmAlthough we do not go
into detail, these recurrences do not exactly correspond to the definition of structure-respecting mapping in
Definition 2.61. The symmetric version of this algorithm corresponds to Lu’s algorithm.

50 Chapter 2. Approximate Tree Matching

D(@®,0)=0
D(0, v(F) e F') = D(0), F o F') + d(e, v)
D(F,0) = Y D¢ (T, 0)
TeEF
D7 (v(F), 0) = D(F, 0) + d(v,¢)
D(Tl ° FJ'_, Fre FZI) + d(E, Uz)
D(T]_ ° F]/_, Uz(Fz) ° le) =min DT(T]_7 @) + D(F]/_ ’Ug(Fz) ° FZ/)

Dr(T1, v2(F2)) + D(FY, Fy)
D(vi(F1), F2) + d(e, v2)

Dr(v1(F1), v2(F2)) = min { D(F1,v2(F2)) + d(vy,€)
D(F1, F) + d(v1, v2)

2.8.2 Strongly Structure-Preserving Distance

As shown in Section 2.8.1, the structure-preserving mapping is asymmetric. Tanaka defined the symmetric
version of the structure-preserving mapping, and termed it astbiegly-preserving mapping
Let M be a tree mapping frorfi to T'. Fory € T, we define theoot imageof y under)M as follows:

Ry =lca{(M ") eT |y<rt]}).

For a node € T, we refer to the complete subtree rooted @ffﬂ) as the image of '(t) underM. The
strongly-preserving mapping is defined as follows.

Definition 2.64 (Strongly Structure-Preserving Mapping [Tan84])
For two ordered treeS andT’, a Tai mappingV/ from S to 1" is thestrongly structure-preservinijthe
following two conditions are satisfied:

1. Vs1,80 € S [RM(Sl) =1l A RAI(Sz) + 1l — [rI (81) dg So <— rl (R]w(sl)) 7 RM(SZ)]].
2.Vt €T [Ru(t) # L A Rulta) # L = [rl(t) <7 t2 <= 1Ry} (t1) 95 Ry (t2)]].

&2 Strongly structure-preserving mapping & Lu mapping. Tanaka and Ohmogt al. stated in [Tan84] and
[OT88] that the strongly structure-preserving mapping is equivalent to Lu mapping in Section 2.8.3. In fact,
the strongly structure-preserving mapping is equivalent to the constrained mapping due to Zhang [Zha95],
and a superclass of Lu mapping. We prove the fact in Section 4.3.

2.8.3 Lu Distance

Although Lu distance is not primarily defined by tree mapping, we introduce it here since it is closely
related to the other tree mapping based distance measures.

Shin-Yee Lu proposed an algorithm [Lu79] of tree edit distance with the same intention as Tai dis-
tance, and applied it to clustering of handwritten characters. As mentioned in [SZ97, Section 14.2.4], this
algorithm does not compute Tai distance despite Lu’s intention, but computes some other distance. We refer
to the distance measure b8 distance Later, the same algorithm for unordered trees was independently
proposed by Aoket al. [AYO *03] for glycan structure matching.

The algorithm for computing Lu distance is based on the following recurrences.

2.8. Structure Sensitive Distance 51

D®,0)=0
D(F,0) = Y Dr(T,0), D@, F) =Y Dr(0,T)
TeF TeF
Dr(u(F), 0) = D(F,) + d(v, €), D7 (0, v(F)) = D0, F) + d(e, v)

Dr(vi(F1), v2(F2)) =

Dr(0, v2(F2)) + min{Dr(vi(F1), T) — Dz (B, 1)}, (e v2)
. Ter, (2.7a)
min DT(’U;[(F']_)7 @) + Tr@g{DT(T’ Ug(Fz)) — DT(T7 @)}, <1}1 — 8>
D(F1, F2) + d(v1, v2), (v1 — v2)
{ D(Fy, T, e F>) + Dp (11, ()
D(Tl o[, Toe Fz) =min D(T1 o [, Fz) + DT(U), Tz) (27b)
D(F1, F2) + Dr(T1, T2)

In these recurrences, Eq.(2.7a) is the same as Eq.(2.4a) for alignment distance, and Eq.(2.7b) is the same as
the recurrence for string edit distance.
These recurrences are computed ififQ(- |7%|) time and space by using dynamic programming.

Structure-preserving mapping & Lu mapping. Shasha and Zhang stated in [SZ97, Section 14.7] that
the algorithm introduced by Tanaka and Tanaka [TT88], i.e. the algorithm for computing the structure-
preserving distance, is the same as Lu’s algorithm [Lu79]. In fact, both fiezetit. It is obvious from the

fact that the structure-preserving mapping is asymmetric, while Lu mapping is symmetric.

Tree mapping for Lu distance. The tree mapping condition for Lu distance has been unknown. We reveal
it in Section 4.8.

2.8.4 Constrained Distance — Isolated-Subtree Distance

This distance measure is also knownsmdated-subtree distand@/Z01]. Based on almost the same inten-

tion as the structure-preserving mapping due to Tanaka and Tanaka [TT88], Zhang proposstianed
mapping(or isolated-subtree mappily and designed a quadratic-time algorithm for ordered trees [Zha95]
and a polynomial-time algorithm even for unordered trees [Zha96]. The constrained mapping is succinctly
and naturally defined as follows.

Definition 2.65 (Constrained Mapping [Zha95, Zha96])
A Tai mappingM is constrainedf the following condition holds:

V(Sl,t]_), (Sz,tz), (53,t3) eM [83 < §1-8p <= 13 < tlvtz].

Note that from Definition 2.65, it is obvious that
(51,52), (t1,t2) € M [s1 < 52 <= t1 < t3]

for any constrained mappint/, i.e. the condition of Tai mapping for unordered trees is implied.

For a tree mappind/ from S to T, let M; and M, be two arbitrary subsets df/. An implica-
tion of the constrained mapping is that if two subtrégka(1M)) and S(lca(M1?)) are disjoint, i.e.
V(S(ca®; M) N V(S(ca(®1®))) # 0, thenT(Ilca(M>Y)) and T (Ica(M>?)) must be disjoint as well,
and vice versa.

From the definition, it is obvious that the constrained mapping is symmetric, and monotonic.

52 Chapter 2. Approximate Tree Matching

S1

Sy @ e

Figure 2.30.Non-constrained and structure-preserving mapping

Example 2.66 Consider the same example as Figure 2.26. It is easy to confirm that, by the tree mapping
M, any disjoint two complete subtrees$hare mapped to disjoint two complete subtree®’ias shown in
Figure 2.29 and vice versa.

On the other hand, the Tai mapping shown in Figure 2.10 is not constrainedsgirces - s7 and
tz & te~to.

The tree mapping ifrigure 2.30is not constrained while it is structure-preserving. Actually, it is
easy to see thay, < s, - sz andts £ t3 - 4. |

The constrained distance is proved to be a metric by the following proposition.

Proposition 2.67 (Transitivity of Constrained Mapping [Zha96, Lemma 2(1)])
The constrained mapping is transitive.

Proof. Let R, S andT be trees. Consider two constrained mappifdss € MS"(R, S) and Mgy €
MET(S,T). It follows from Proposition 2.48 that/sy o Mg is a Tai mapping.

For eachi € {1,2, 3}, let (r;,¢;) be any element il/rs o Mgr. Then, there exists; such that
(ri,s:) € Mgs and 6;,t;) € Mgy for eachi € {1,2,3}. By the definition of constrained mappings, the
following holds:

r3 < r1-Tp < 83 < S1— 82 andsz < s1- 852 & 13 < t1-1o.

Thereforeys < r1 -1y & t3 < t1 -t holds. |

Corollary 2.68 (Metric of Constrained Distance [Zha96, Theorem 2])
The constrained distance is a metric.

Proof. Since there exists an isomorphic mapping between the same two trees, and the constrained mapping
is symmetric, then it is obvious that for any treéeandT’,

DS'(T,T) =0 and D®'(S,T) = D®'(T, S).
tZhang refers to it as eonstrained edit distance mappiig[Zha95, Zha96].

2.8. Structure Sensitive Distance 53

D®,0) =0
D(F,0) = Y Dr(T.0), D@, F) =Y Dr(0,7)
TeF TeF
Dr(v(F), D) = D(F, () + d(v, £), Dr(0,v(F)) = D@, F) + d(e, v)

Dr(v1(F1), v2(F2)) =
Dr (0, v2(F2)) + T”;igz{DT(Ul(Fl),T) =Dz (0,T)}, (e v2)

min{ Dr(ua(F2),0) + min{Dr(7, va(F2) ~ Dr(T,)}, (o1 —) (2.82)
D(F1, F») + d(v1, v2), (v1 = v2)
D@, F)+ min_ {D(Fs, F3) — DO,)}
Dy, £) = mind D(FL0)+ min_ (DU, F2) - DU) (2.8b)
Ds(F1, F2)
Ds(,0) = 0

DS(T. Fa Q) = DT(T7 Q)) + DS(Fv @)
DS(®7T. F) = DT(QT) + DS(maF)
Ds(F1, F2) + D7 (11, T2)
Ds(T1 e F1,T5 @ F,) = min Ds(TltFl,F2)+ DT(Q),TQ) (2.8¢)
Ds(F1, T2 @ I2) + D (T1,0)

Figure 2.31.Recurrences for computing constrained distance for ordered trees

Since tree mapping is subadditive by Lemma 2.40, and the constrained mapping is transitive by Proposi-
tion 2.67, it follows from Proposition 2.45 that the constrained distance is transitive, i.e. for anyrirges
andT', we have

DS'(R,T) < D®(R, S) + DS7(S, T).

Therefore, the constrained distance is a metric. |

Zhang's Algorithm for Ordered Trees

Zhang proposed anfficient algorithm for computing the constrained distance for ordered trees [Zha95]
based on the recurrences showifrigure 2.31
Note that an optimal constrained mapping is required (evehisf not a metric), Eq.(2.8a) should
include the factor
D(Fy, F2) + d(v1, €) + d(g, v2)

as in the case of Eq.(2.5) in alignment distance. The definition@#R F?) is the same as the string edit
distance if two forest$; and I, are regarded as two strings consisting of trees instead of symbols. These
recurrences are computed by using dynamic programming technique as shown in Algorithm 2.5.

Complexity. The computational complexity of this algorithm is estimated as follows. For each pair of
nodesv; € Ty andv; € Ty, the procedure RingEprrDistance runs in O(ch(vs)| - |ch(vz)|) time. The time
complexity of computing Dy, F>) in Eq.(2.8b) and B(731, T») in Eq.(2.8a) is bounded by @h(v;)| +
|ch@.)|). Hence, the factor of @¢h(v1)| - |ch(vz)|) dominates the time complexity for each paire 71
andwv, € T». Therefore, the time complexity of Algorithm 2.5 is

> > o(jch@y)] - [eh@)]) < O (> leh@)] x > |ch(v2)|>

v1€T1 v2€T3 v1€T1 v2€T3

<o(|1| - |72).

The space complexity is Q| - |T%|) since we need to storeQ71(v;), T2(v2)) and DF1(vy), F2(v2)) for
eachw; € Ty andv, € Tb.

54 Chapter 2. Approximate Tree Matching

Algorithm 2.5 Constrained distance for ordered trees
procedure ConsTRAINEDDISTANCE(TY, T%)
D@®,0) < 0
foreachv € T} in postordeido
let F; be a forest such thdt (v) = v(F1)
D(F1,0) < > rep Dr(T,0)
Dr(v(F1),0) < D(F1,0) + d(v, €)
foreachv € V(13) in postorderdo
let F; be a forest such th8b(v) = v(F)
D(@,) — ZTer DT(Q, T)
Dr (0, v(Fy)) < D0, F) + d(e, v)

for v1 € Ty in postorderdo
let F; be a forest such thdf (vy) = v1(F1)
for v, € T in postordeido
let F; be a forest such th8b(v,) = va(F3)

D(0, F») + U(gz)iQFz{D(Fl, Fy) —D(0, Fy)}

D(Fy, F2) =min{ D(F1,0)+ min {D(F}, F») — D(F],0)}
v(F])EF1

SrrRINGEDITDISTANCE(F1, F5)
Dr(v1(F1), v2(F2)) =
Dr (0, v2(F2)) + jgéipz{DT(Ul(Fl): T)-Dr(0,T)}
min ¢ Dr(vi(F1),0) + jl:réipl{DT(Ta v2(F2)) — Do(T,0)}
D(F1, F2) + d(v1, v2)
return Dp(71, 1)
end

procedure StRINGEDITDISTANCE(T L @ - - - ¢ T/ T3 o - - - @ T}Y)
Ds[0,0] — O
for i «— 1tom do
Dsl[i, 0] « D[i — 1,0] + D (T}, 0)
for j «— 1ton do ‘
Ds[0,] < DIO, j — 1] + D7 (0, 73)
for i — 1tomdo
for j «— 1ton do }
Ds[i — 1,j — 1] + Dr (T}, T)
Dsli, j] < min{ Dsli —1,j1 +Dz(T1,0)
Dsli,j —1] +Dz(0,7%)
return Dg[m, n]
end

Zhang's Algorithm for Unordered Trees

In contrast to Tai distance and the alignment distance problems, the constrained distance problem has a poly-
nomial algorithm for unordered trees. Zhang proposed an algorithm for computing constrained distance for
unordered trees [Zha96]. This algorithm has the same structure as that for ordered trees in Figure 2.31
except for Eq.(2.8c). Zhang designed the algorithm by replacing the string edit distance problem in Equa-
tion (2.8c) for ordered trees with a minimum cost maximum bipartite matching problem, and reducing it

to the minimum cost maximum flow problem. This algorithm runs ifIQ(- |7%| - (deg(1) + deg(?)) -
log,(deg(l1) + deg(l?))) time for given two unordered treds and7>.

Improvements of Constrained Distance

Recently, Wang and Zhao proposed a more spfit@ent algorithm for computing constrained distance for
ordered trees. It runs in O((Id@.|) - |T»|) space with the same time complexity|Dy - |T%|) as Zhang's
algorithm for two input tree§; and7>.

2.8. Structure Sensitive Distance 55

Ferraro and Godin improved the algorithm to find an optimal constrained mapping with minimum
number of connected components [FG03] with the same computational complexity, and applied it to the
plant comparison problem [FGOQ].

2.8.5 Structure-Respecting Distance

In order to design more structure-sensitive distance than Tai distance, Richter independently introduced the
structure-respecting mappiric97] for ordered trees with the same intention of the constrained mapping.
The structure-respecting mapping is defined as follows.

Definition 2.69 (Structure-Respecting Mapping [Ric97]) A tree mappingV is structure-respecting
if the following condition holds: for all{;, t1), (s2, t2), (s3, t3) € M such that none of;, s,, andss is
an ancestor of the others,

§1-82 = 81-83 <= t1-tr =t1-13.

From the definition oktructure-respecting distancRichter [Ric97] derived exactly the same algo-
rithm as Zhang’s algorithm for computing constrained distance for ordered trees [Zha95] in Algorithm 2.5.
The diference between two algorithms arises just from the estimation of computational complexity. Zhang
gave a tighter estimation than Richter. Richter estimates that this algorithm rungin Q7%| - deg(y) -
deg(l»)) time and O(dedly) - dep(l1) - |T2|) space (or Q1| - |T2|) space when tree mapping is required
by traceback).

Constrained mapping & structure-respecting mapping. The equivalence of two tree mapping classes
defined in Definition 2.65 (constrained mapping) and 2.69 (structure-respecting mapping) has yet to be
proved, although these two algorithms are the same, and Chin Luegidlustated thaboth the concepts

of constrained edit mapping and structure respecting mapping are equialerirove the equivalence
between these two classes in Section 4.1.

2.8.6 Less-Constrained Distance

Theless-constrained mappimgas introduced by Chin Lung Let al. [LSTO01] with the intention of relaxing
the condition of the constrained mapping [Zha95, Zha96] so that non-constrained mappings &3dh as
Figure 2.32b) are allowed while Tai mappings such & in Figure 2.32(c) remain prohibited. Let al.
formulated the condition of less-constrained mapping as follows.

Definition 2.70 (Less-Constrained Mapping [LSTO1]) A Tai mappingM is less-constrainedf the
following condition holds: for all £, t1), (s2, t2), (s3,t3) € M such that none of;, s, andsz is an
ancestor of the others,

S1-82 <X 81-83 A 81-83=82-83 <= tl1-1lp <t1-t3 N t1-tz=1r-13.
This definition is, in fact, critically inconsistent with the concept of less-constrained mapping as follows.

The concept of less-constrained mapping is not formulated by Definition 2.70/e show an example
that illustrates the inconsistency between the concept of less-constrained mapping and what Definition 2.70
implies.
Example 2.71 Consider the less-constrained mappidgin Figure 2.32(b). It is obvious that the following
two conditions are satisfied /.
® 51-5p < 5183 andsy —s3 = sp—53.
® {1-tp f ti-tzandty -tz = tp - ta.
Therefore, the tree mappinyg’, is excluded by Definition 2.70. 1

Moreover, in Section 4.4, we prove that Definition 2.70 is mathematically equivalent to the definition of
constrained mapping (Definition 2.65), and we give a correct definition.

56 Chapter 2. Approximate Tree Matching

(a) Constrained and less-constrained mapping

S

(b) Less-constrained, but not constrained mapping

S
T

(c) Neither constrained nor less-constrained mapping

Figure 2.32.Feature of constrained and less-constrained mappings

The algorithm for computing less-constrained distance [LSTO1] for ordered trees was proposed based
on the recurrences iRigure 2.33 where D1, F3) denotes the alignment distance between two forEsts
and F», and Dp(71,T>) denotes the alignment distance between two tigeand7>. While the mapping
definition is inconsistent with the concept of less-constrained mapping, this algorithm is consistent with the
concept of less-constrained mapping. These recurrences are the same as those for alignment distance except
for Eq.(2.9¢). This algorithm runs in Q| - |T»| - deg(1)® - deg(»)® - (deg(ly) + deg(l»))) time.

Less-constrained mapping & alignable mappingWe prove the equivalence between two classes of less-
constrained mapping and the alignable mapping in Section 4.6.

Computational Complexity for Unordered Trees

Chin Lung Luet al. showed that the less-constrained distance problem for unordered trees has no polynomial-
time absolute approximatioalgorithm unless 2 NP [LSTO01]. A problem has aabsolute approximation
algorithm if, for any instancé of the optimization problem, the absolute error of the approximate solution
APP(I) is bounded by a constaati.e.

|APP() — OPT({)| < ¢,

where OPTY() is an optimal solution of (cf. [ACG*02, Section 3.1.1]). This result is more negative than
MAX SNP-hard.

2.9. Subtree Isomorphism based Distance 57

D®,0) =0
D(F,0) = Y Dr(T.0), D@, F) =Y Dr(0,7)
TeF TeF
Dr(v(F), D) = D(F, () + d(v, £), Dr(0,v(F)) = D@, F) + d(e, v)

Dr(v1(F1), v2(F2)) =

Dr (0, v2(F2)) + :ﬁne'g {Dr(vi(F1),T) — D7 (0, 7)}, (e+ v2)
2
min{ Dr(us(F),) + min {Dr(T, v2(F2) ~ Dr(T,0)}, (o1 —) (2:92)
1
D(Fl, Fg) + d(vl, ’Ug)7 <U1 — ’U2>
D(Fy, F> @ T3) + Dp(11,0)
o D(Fy e Ty, F>) + Dr(0, T2)
D(Fpe Ty, Fy eTy) = min D(Fy, %) + Dy(T1. T) (2.9b)
D'(FLe Ty, Fre 1)
D'(Tte---0T/" Tre---eTy) =
D(T! e ---OT{_l,T210~~'OT571)
15[2127” +D(Ti e--- 0Tk, F)) + (f(s7 V)
_ iisn (+D(Tf* e 0T TS 0. 0 TH)
min 1 i1l j—1 . (2.9¢)
D(Tfe- - oTi Te---eTi
min - +D(F{, T3 e - ¢ T3) + d(vy,¢)

1<j<k<n

+D(Ti*t e - 0 T" Tl e ... 0 TH)
where letT} = vi(F}) andTy = va(Fy).

Figure 2.33.Recurrences for computing less-constrained distance for ordered trees

2.9 Subtree Isomorphism based Distance

The problem of determining whether two trees are isomorphic has been extensively studied and fundamental
for a variety of tree pattern matching problems. In approximate tree matching, the problem of finding a
common subtréebetween two trees is an important generalization of tree isomorphism. This problem has
a lot of variants, which are defined by tree mapping as well as the other tree edit distance measures.

2.9.1 Top-Down Distance — LCST Problem

The top-down distance is a tree edit distance measure with a simple restriction on edit operations. That is,
applying deletions and insertions is confined to leaf nodes.

From the historical point of view, the edit-based approach to approximate tree matching probably
dawned with the top-down distance due to Selkow [Sel77]. Later, Yang [Yan91] and Chawathe [Cha99a]
applied the top-down distance to the change detection problem of two parse trees of programs toward a
better alternative to théi ££ utility [HM76].

Wang and Zhang [WZ01] redefined the top-down distance by settingphdown mapping

Definition 2.72 (Top-Down Mapping [WZ01]) A Tai mappingM between two tree$ andT is a
top-down mappingf, for any pair (s, t) € M such that botls andt¢ are non-root nodes, there exists also

a pair (parg), parg)) € M.

We show an example of top-down mappingHFigure 2.36 The algorithm for computing the top-
down distance is based on the following operational definition [Sel77].

TThe termsubtreemeans a connected subtree pattern in a tree (See Remark 2.1).

58 Chapter 2. Approximate Tree Matching

D(®,0) =0
D(F,0) = Y Dx(T.0), DO, F)= > Dr(0,T)
TeF TeF
Dr(u(F), 0) = D(F, 0) + d(v,), D (0, v(F)) = D, F) + d(e, v)

Dr(v1(F1), v2(F2)) = D(F1, F2) + d(v1, v2)
Dr(11,T3) + D(F1, F2)

D(Ty e F1, T2 8 F2) =minq Dp(T1,0) + D(F1, T2 e F)
Dr(0, T2) + D(Ty @ Fy, F)

In Algorithm 2.6, we show the algorithm proposed by Selkow [Sel77]. This algorithm rungT |O(T%|)
time and space.

Complexity. For two given treesl; and 75, the procedure &TopDownDistance is called once for
each pair of nodes; € T; andwv, € T, with the same depth, i.e. dep] = dep@,). In each call,
SusTopDownDistance runs in O(ch(v1)| - |ch(v,)|). Therefore, the time complexity of Algorithm 2.6 is
O(|T1] - |T»]) as in the case of the constrained distance problem for ordered trees.

Algorithm 2.6 Selkow’s algorithm for top-down distance
procedure TopDownDistance(771,7%)
/* precompute the global array-, -) andDr(-,-) */
D(@,0) — O
foreachv € T} in postordeido
let 1 be a forest such th&t (v) = v(F1)
D(Fy, 0) — 3 e, Dr(T', 0)
DT(U(Fl), @) — D(Fl, @) + d(v, 8)
foreachv € V(13) in postorderdo
let 3 be a forest such thdb(v) = v(Fy)
D(0, F2) « ETGFZ Dr(0,T)
D7 (0, v(F2)) «— D@, F>) + d(e, v)
return SubTopDownDistancé&f,7%)
end

procedure SuToPDowNDiSTANCE(v (T @ - - - @ Ti™), vo(T5 @ - - - @ T3Y))
D[O/ 0] — d(’Ul, Ug)
for i «— 1tom do
D[i,0] = D(T e --- o T},)
for j « 1ton do »
D[0,j] =D, T3 e---¢T3)
for ¢ < 1tom do
for j +— 1ton do
D[i — 1,5 — 1] + SusTopDowNDistance(77, sz)
D[4, j] = min { D[i — 1, j] + D (T%,0)
D[i,j — 1]+ Dr(0,77)
return D[m, n]
end

2.9. Subtree Isomorphism based Distance 59

Chawathe’s Algorithm

All the algorithms for computing top-down edit distance due to Selkow [Sel77], Yang [Yan91] and Chawathe
[Cha99a] run in (71| - |T2|) time for given two treed; andT>. The algorithms by Selkow and Yang in-
clude a recursive call as shown in Algorithm 2.6. On the other hand, Chawathe’s Algorithm [Cha993] is
designed without recursive calls. In this algorithm, the top-down distance problem for two trees is reduced
to the shortest path problem in a kind of lattice graph calleé@ihgraph The edit graph is constructed
according to the following definition.

Definition 2.73 (Edit Graph for Two Trees) Let S andT be trees. Letss,ss,...,s, € S and
t1,t2,...,t, € T be sequences of nodes indexed by left-to-right preorder numbering, yetem
and|T| = n. Theedit graphof S andT is an edge weighted gragh(S, T') = (V, E) such that

e the set of vertice¥ is {v;; ;) | (4,5) € {0,...,m} x {0,...,n}},
e the set of edge&’ consists of the following edges:
(Assume that two dummy nodes,,; andt, 1 with depth 0)

+ depf) = dep(;) <

(v—1,j-1), vi,5) € E with the weightd(s;, t;) for (i, j) € {1,...,m} x {1,...,n},
* depg;) > dep¢;.1) <~

(va-15), vG,j)) € E with the weightd(s;, €) for (¢,7) € {1,...,m} x {0,...,n},
* dep;s1) < depf;) <

(vG -1, vG,5) € E with the weightd(e, t;) for (¢, j) € {0,...,m} x {1,...,n}.

Given two treess andT’, each node of edit graph férandT' is represented as B[], which stores the
top-down distance between two subforeSf$si, ..., s;}] andT[{t1,...,t;}] for (4,5) € {O,...,|S|} x
{0,...,|T|}. We show Chawathe’s algorithm in Algorithm 2.7.

Example 2.74 Consider two ordered trees Figure 2.34 in which each node is indexed by left-to-right
preorder numberingFigure 2.35a) shows the edit graph for two ordered tréeand7 after computing
TorDownDistance(S, T), where all the edit costs are assumed to be 1 (unit cost). In Figure 2.35(a), the
distance (minimum weight) from top left to bottom right in the edit graph is computed, and it turns out to
be 5 as given at the bottom right node. It is easy to design the traceback procedure for obtaining optimal
top-down mappings as well as the procedukecEeack in Algorithm 2.1 for strings. Figure 2.1(b) shows

two shortest paths corresponding to two possible optimal top-down mappings in Figure 2.36. 1

S T
cal anl

bo?2 br4 b2 bo6
do3 cd5 do6 cc3 do4
dos

Figure 2.34.Two input trees in computing top-down distantzbels are attached to the left of the
nodes, and sequential numbers in preorder to the right.

Largest Common Subtree (LCST) Problem for Unordered Trees

This problem is also known asp-down maximum common subtree isomorpHhigai98, Section 4.3].
Thelargest common subtrgg& CST) problem is the top-down distance problem with LCS costs (See Sec-
tion 2.6.2). Yang’s algorithm [Yan91] has, in fact, the LCS-costing scheme.

This problem has been well-studied independently of the top-down distance problem, and some re-
sults have a significant impact across the board on the approximate tree matching problem.

60

Chapter 2. Approximate Tree Matching

T

0 1 Z 2 3 l
a

1—)@—1—)@—1—)@—1—)@—19@_ _)@

)©

Oct 1 1

é ‘ —1—)@)—1—){@—1—)@)—1—)@)< —)@
1b1 1

© o \®— Q@@ \@

[\ [\

Sy *

C?) @\1 @)1 @—1»@— ‘)@
lb1 1

CATD (ATD \©I9® 19@]—)@ C\E
S

® ® @ *H@*l»@ @

I [I |\ : |
294 i i \@

®1 1 | @ —1»@—1»‘

(a) Edit graph obtalned after computing
TopDownDistance(S, T')

T
0 1 2 2 3 1
a b c d d b
1...@..., @ttt (B (6)
Oc1 1
® \®1@ LBt @t (B ot ()
1b1 ?\0 o
©) é) 1—@) 1 (Bt @) ®
I N
S 2d1 ; 1 1. o\
® e @ © O——Q®
1b1 1\0 \
@ @ \®\1 @Bt (©) Q\Ci)
2c1 1 10 1
® © ® Wrero &
2d1 1 1 1\0\ ?

(b) Two shortest paths in the edit graph

Figure 2.35.Edit graph for two ordered treeS and T’

Figure 2.36. Top-down mappings

Algorithm 2.7 Chawathe’s algorithm for top-down distance

procedure TopDownDistancef,T")

Input: left-to-right preorder sequences of nodes

S1,...,8m € S, where|S| =m

t1, ..., tn € T, where|T| =n

let s,,+1 andt,, ;1 be dummy nodes with depth 0

D[0,0] — O
for i «— 1tom do

D[i,0] « D[i — 1,0] + d(s;, €)
for j «— 1ton do

D[0, j] « DI[0, 5 — 1] + d(e, t;)
for i — 1tom do

for j +— 1ton do

€T <= 00; Y «— O0; 2 +— 00

if depe;) =dep¢;) then x — D[i—1,j—1]+d(s;, ;)

if dep6;) > dep¢;.1) then y « D[i —1,j
if depé;.+1) < dep¢;) then z «— DI,

D[i, j] < min{z,y, 2}
return D[m, n]
end

1+ d(si, €)
Jj— l] + d(S, tj)

2.10. Related Work 61

There is an O®)-time algorithm for unordered trees, and amm&)time algorithm for unlabeled
unordered trees with bounded degree [Mat78]. Recently, Fukagawa and Akutsu proposed a fixed-parameter
algorithm for unordered trees with a bounded size alphabet [FA06]. This algorithm runs‘in)Qie
for unordered trees, whefeis a fixed upper bound of flferences between two input treEsand 7>, and
n = max{|Ty|,|T>|}. Even for unrooted trees, it runs in G¢4) time.

For more than two input unordered trees, Akutsu [Aku92] showed that the LCST problem is NP-
hard, and moreover, Akutsu and Baliegdson [AHOO] showed that the LCST problem is also very hard
to approximate. This result implies that the intractabilitynaditiple tree matching problentsased on not
exclusively the LCST problem but also the other approximate tree matching problems.

2.9.2 Bottom-Up Distance

The bottom-up distance [ValO1] is a tree edit distance measure with the restriction that applying deletions
and insertions is confined to maximal nodes with respect to hierarchical order.
Valiente introduced thbottom-up mappingpr formulating the bottom-up distance.

Definition 2.75 (Bottom-up mapping [ValO1]) A Tai mappingM between two tree$ andT is a
bottom-up mapping and only if, for any pair §,t) € M, the following hold.

1.Vse S [se MY = Vs € S(s) [€ MM].
2.VteT [te MP = W eT@t) [t € MP]].

The bottom-up mapping between two trees is the common complete subforest between two trees if
labels are ignored.

Valiente proposed an @ | + |7%|)-time and -space algorithm [Val01] for computing the bottom-up
distance for both ordered and unordered trees. This algorithm takes advantage of the algorithms for the
common subexpression problem [DST80, FSS90]. Then, it basically computes the LCS-cost bottom-up
mapping between two trees.

The bottom-up mapping is not a subclass of isolated-subtree or constrained mappinBefinition 2.75

is different from the original definition of bottom-up mapping [Val01] in which the bottom-up mapping is
required to be a subclass of isolated-subtree mapping. Since Valiente’s algorithm, in fact, does not compute
isolated-tree mappings, we omit the requirement of isolated-subtree mapping in our definition of bottom-up

mapping.

Example 2.76 Figure 2.37shows an optimal bottom-up mapping between tigesd7" (we only depict

the mapping between maximal nodes with lines). This example is drawn from [ValO1, Figure 8]. From
this example, it is easy to verify that the bottom-up mapping is not constrained, i.e. not an isolated-subtree
mapping. In fact, althoughk, < s7 - sg does not holdt, < tg-t12 holds. |

2.10 Related Work

There have been various directions to study related to approximate tree matching. Most of improvements
and refinements in approximate tree matching have been made by taking advantage of the results in the field
of stringology such as fixed-parameter algorithms, low-distortion embeddings, non-linear gap penalty, local
similarity, multiple alignment. These topics are all intriguing and significant for real-world applications also

in trees. In this section, we give a cursory review on some of these topics.

2.10.1 Hierarchical View of Tree Mappings

Wang and Zhang [WZ01] established a hierarchy among several distance measures based on the notion of
tree mappings. Although there was some confusion in understanding the relationship between the structure-
preserving distance [TT88] and the constrained distance [Zha95], the following was proved.

Tat 2 A~ 2 Cst D Top.

62 Chapter 2. Approximate Tree Matching

Figure 2.37.Bottom-up mapping

2.10.2 Tree Inclusion Problem

The tree inclusion problem is regarded a special case of approximate tree matching. For twoainelds
Pisincludedin T if P is obtained froni” by deleting nodes ifi".

The tree inclusion is also defined by a class of tree mappings. A tree mappifigm P to T is
left-total if the following holds:

Vp € P[3t € T suchthatyg,t) € M].

P isincludedin T if there exists a left-total Tai mapping with LCS costs fromP to T'.

Since Kilpekinen and Mannila proposed [KM95] a quadratic-time algorithm for ordered trees, some
improvements have been made [Che98, Bil05].

The tree inclusion problem for unordered trees are proved to be NP-complete [MT92, KM95]. Va-
liente proposed a constrained tree inclusion [Val05] by confining deletions only to nodes with at most one
child, and presented a polynomial time algorithm for unordered trees.

We summarize the complexities of these algorithm$ahle 2.8

Table 2.8. Computational complexity of tree inclusion problem

Trees Class Reference Time Space
general [KM95] O(¢pny) O(npnt)
general [Che98] O(lpny) O, min{hy, £ })
ordered general [BGO5] O(l,ny) O(np + ny)
general [BGO5] O(nyl:loglogn:) O(ny + ny)
general [BGO5] O(n,n./logn,) O(ny, + ny)
constrained [Val05] O(n,n./logn,) O(nyny)
unordered general [MT92, KM95] NP-complete
constrained [Val05] O(ny°ne/logny) O(nyny)

np = |P|, nt =|T|, £, = |leavesP)|, ¢; = |leaves)|, h¢ = dep(’)

2.10.3 Additional Edit Operations

In this thesis, we consider only the three elementary edit operations: replacements, deletions, and insertions.
Barnard [BCD95] introducedwapping operationsn two complete subtrees rooted at adjacent siblings

into Zhang-Shasha’s algorithm for computing Tai distance. Also, Bille [Bil03] incorporatrdeandsplit
operationson nodes into Zhang-Shasha’s algorithm with some restrictions. Chaga#hd CRGMW96,

CGMQ97, Cha99b] proposedfizient change detection algorithms includimgpve operationen complete
subtrees with heuristics for semi-structured data such as XML documents.

2.10. Related Work 63

Magniez and Rougemont [MRO7] proved that the Tai edit problem for ordered trees with move oper-
ations on complete subtrees is NP-complete even for binary trees by reducing the one-dimensional perfect
BIN-PACKING problem into the Tai edit problem.

2.10.4 Gap Costs

Sakakibara [Sak03] proposed a polynomial-time algorithm for computing alignments of a specific type of
binary trees withgffine gap penaltiefor the analysis of RNA secondary structures. For more general gap
penalties in tree edit distance, Touzet showed the following negative result.

Convex Gap Costs for Tai Distance

For a tree mapping/ between two tree§ andT’, we refer to the set of (inserted or deleted) nodégs) \

MWy u (V(T)\ M@) as thegapsin M. In this thesis, we consider only tree edit distance Withar gap

costsi.e. insertions and deletions are applied to nodes one by one, and the total cost is evaluated as the sum
of each cost of editing one single node.

On the other hand, in string edit distance, a variety of costing schemes other than linear gap costs have
been proposed in computational biology for confirming to biological models (cf. [Gus97, Section 11.8,12.6]).
In analogy with the costing schemes in strings, Touzet [Tou03] proposed a new edit modebepibexl
edit distance In this model, we can delete and insert a subtree with contiguous nodes by one step edit
operation. Aconvex gap codtnction is as a natural extension of it for strings, and defined as follows:

cost(r1(2)) < costfr) + cost(),

wherer; andr, are subtrees, and(7) is a subtree such tha is attached to a leaf af,. Touzet showed
a negative result that the Tai edit problem with convex gap costs for ordered trees is NP-hard, while there
exists a quadratic-time algorithm if gaps are restricted to complete subtrees [Tou03].

2.10.5 Local Similarity between Trees

If two large trees are not totally similar but share a small important subtree pattern, we need a specific
method to find such a local pattern in steadgtifbal tree matching methods. In strings, the algorithms
for computinglocal alignmentshave been widely developed since Smith and Waterman first presented a
local alignment algorithm [SW81]. The technique used in Smith and Waterman'’s algorithm is also applied
straightforward to the algorithms for finding local similarity in tree mappings of the alignable and the
constrained classes.

Hochsmanret al. [HTGKO03] proposed an algorithm for computing an optimal local alignable map-
ping between ordered trees, and applied it to the analysis of RNA secondary structur@s,[Bection 7.1].
This algorithm runs in Q3| - |7%| - deg(1) - deg(l%) - (deg(l1) + deg(l%))) time and O[T | - | 1| - deg(1) -
deg(l%)) space for two input treeg; and73. Ferraro and Ouangraoua [FOO5] proposed an algorithm for
computing an optimal local constrained mapping between unordered trees with the same complexity as
Zhang'’s algorithm [Zha96].

Aoki et al. [AYO *03] developed a local approximate matching algorithm for unordered trees. This
algorithm is a local matching and unordered tree version of Shin-Yee Lu’s algorithm [Lu79].

2.10.6 Approximation of Tree Edit Distance

For a large data set of trees, as in the case of strings (Section 2.2.7), the computation of tree edit distance is
often required to speed up even by sacrificing the accuracy of the computation.

In addition, if this metric space of tree edit distance can be embedded into a more familiar and tractable
metric space such as Euclidean space while preserving the distances between each pair of trees, it may gain
the understanding of the whole structure of given data.

Filtering by a Lower Bound

Inspired byg-gram distancéor strings due to Ukkonen [Ukk92], a few similar methods have been proposed
for trees.

64 Chapter 2. Approximate Tree Matching

Kailing et al. proposed distance measures [KKSS03] between unordered trees by combining a few
very simple histograms of tree featuré®. degrees, heights, and labels of all nodes. These histogram-
based distance measures are all computed in linear time, and are obviously lower bounds of Tai distance
between unordered trees.

Augstenet al. [ABGO05] introducedpg-gram distancébetween two ordered trees. Thggrams are
subtrees in which the number of leaveg isith the same depthand the number of edgesps ¢ — 1. The
pg-gram distances defined based on thefférences of the number of the occurrencesgefirams between
two input ordered trees. They-gram distance between two trees is computed inl@g») time and Of)
space for the size of trees Although it is not shown that thgg-gram distance gives a theoretical lower
bound of any tree edit distance, th@-fyram distance achieves empirically dfeetive approximation to
Tai distance for real address data in the form of ordered trees.

Yanget al. [YKTO05] also introduced théinary branch distanc8BD(77, T>) between two ordered
treesT; and7>. A ¢-level binary branctis a perfect binary tréewith depthq. Two input trees are normal-
ized into binary tree representations. Then, the binary branch distance is defined basedfterémees of
the number of the occurrencesgfevel binary branches between two input ordered trees. It is computed
in O(T1| + |T%|) time. The lower bound is given as follows:

BBD(T1,12) < (4- (¢ — 1)+ 1) - DI*(T3, To).

Tree Edit Distance Embeddings

As in the case of strings (Section 2.2.7), the low-distortion embedding problem for tree edit distance has
very recently started to be addressed.

Garofalakis and Kumar [GKO5] first introduced a low-distortion embedding algorithm of Tai distance
for ordered trees with move operations on complete subtrees. This algorithm embeds antcea vector
image FV(T) with at most Qf’|) non-zero components in (| log* | T'|) time. For two ordered tre€g;
andT3, andn = max{|T1|, |T»|}, the following logarithmic distortion bounds are proved:

D"(T1,T5) < 5- |FV(T1) — FV(Z2)|, = O(log’ nlog* n) - D{* (1%, T).

Moreover, Garofalakis and Kumar applied their algorithm to building a compact concise sketch synopses,
and to approximating the similarity joins over streaming XML data.

Akutsuet al. [Aku06, AFTO6] proposed two algorithms of embedding Tai distance for ordered trees
into string edit distance. These embedding algorithms do not require move operations, but assume bounded
degree trees. An input tree is coded into a string by using an Euler tour or a modified Euler tour (See
[AFTO6]). For a treel’, let us denote these two codings byLEr(T") and EiLer’(T') respectively. Then the
following hold.

1
Tk D{*(T1, T2) < DF"(EuLer(T1), EuLer(T2)) < 2- D{*(T4, T),
1 Al 1T Al
0wy D*(Ty, T») < DPT(Euier’(T1), EuLer’ (T%)) < 6 - DI (T1, T3),

whereh is the minimum height of two input trees, and the sizes of both trees are assumed to)be O(

2.10.7 Edit Distance between Graphs

There has not been an established model of the edit distance for general graphsetBainkave recently

given a couple of edit distance measures between two graphs based on the maximum common subgraph
[Bun97], the maximal common subgraph [BS98], and the minimum common supergraph [BJK0O]. On the
other hand, Robles-Kelly and Hancock proposed methods for converting a graph into a string to exploit the
established theory of string edit distance [RKH02, RKHO03].

2.11 Summary

There are a lot of problem settings in approximate tree matching according to the factors considered such
as tree types, costing schemes, edit operations, the classes of tree mappings. We mainly focus on labeled
rooted trees, and formulate a variety of methods in a uniformed representation. Then we have clarified
confusion and inconsistency in prior work as follows.

ta perfect binary tree is a tree in which every node has two or zero children, and all leaves are at the same depth.

2.11. Summary 65

® The tree mapping for alignment distance has not been known in any explicit formulation since Jiang
and Wang proposed an algorithm for computing alignment of trees [JWZ95].

e The formulation of less-constrained mapping due tcetal. [LSTO1] does not imply the tree map-
pings initially intended.

® The relationship among structure-preserving, Lu, constrained, less-constrained, and structure-respecting
distance measures are not clear, although some are regarded as the same.

The following two chapters are devoted to solve these problems.

Chapter 3

Theoretical Foundation of
Approximate Tree Matching

In the previous chapter, we went through a variety of tree edit distance measures in both operational and
declarative forms. Now we have found that there exit a few inconsistencies between declarative definitions
and operational definitions.

In this chapter, we equip the notion of tree edit distance with an algebraic formulation for bridging
the gap between operational and declarative semantics.

3.1 Preliminaries

We first show some important properties on interrelations of nodes in a tree with respect to least common
ancestors.

Proposition 3.1 For any treel’ = (V, <), and anyz, y, z € V, the following properties hold.

=

. For any subset of nodds C V/, there exists a unique least common ancestar.of
. x -y andz - z are comparable.

r~T =1X.

-y =y-T.

(@-y)-z=z-(y~-2)

Ty &< T-y=y.

y<zx AN z<z = y-z<uz.

o< Ny<y = z-y<a-y.

. lcaU) = IcaU \ W U {Ica(W)}) for non-emptyi¥ such that? C U C V.

-y <IT-zZ = T-Z=Y-Z.

© O NOO A ®N

e =
= O

LTy =x-2 = Y-z < xT-y.

Proof. 1. Letx andy be two least common ancestorslof Thenx < y andy < x hold. Hencer = y.
2. Bothz < -y andx < z -z hold. By Definition 2.17(2)z -y andz - z are comparable.
3-9. We omit these proofs since they are all obvious.
10. Sincey < x -z by the premise, we have- z < z-z. We consider the following two cases since
x -y andy - z are comparable by (2).
e Assumer-y < y-z, thenz < y-z. We haver-z < y-z.
e Assumer-y > y-z, thenz -y > 2. We haver -y > x - 2. Itis contradictory to the premise.
Hence we havg-z < x-zandz-z < y-z.
11. It follows from z < x - z and the premise that < z -y holds. Moreovel < x -y also holds, then
y-z < x-y.

67

68 Chapter 3. Theoretical Foundation of Approximate Tree Matching

1
From Proposition 3.1.9-10, the relation among the least common ancestors of two nodes among given
three nodes is summarized as follows.
Corollary 3.2 For any treel’ = (V, <), and anyz, y, z € V, any of the following properties holds.

l.zwy<z-zandzr-z=y-z.
2. x-y=x-zandy-z < z-z.
.x-y>zr-zandr-y=y-z.

For an ordered tree, there have several relations between the hierarchical order and the sibling order
via least common ancestors.

Proposition 3.3 For any ordered treg& = (V, <, <), and anyz,y,z € V, the following properties
hold.

lLz<y = z<z~-y Ny<z-y.
2.x-y<z-z ANx <z = y<2z.
. z-y<z-z ANx -2z = y> 2.
4. x<y<z = z-y< -z
S2<y<z = y<z-z

Proof. 1. Sincez < y, two nodest andy are incomparable with respect to the hierarchical order, i.e.
z £ yandy £ x. We then immediately have < z -y andy < z-y.

2. Sincex < z, we haver -y « z. Also we haver -y # z sincez -y < - z. Hencezr -y andz are
incomparable in the hierarchical order. It follows thaty < z because ifc -y > z, we haver > 2.
Thus we obtairy < z sincey < x-y.

3. We omit this proof since this is symmetrical to (2).

M x-y >z -zandy < z, then we havg < x by (2). This is the contraposition of the assertion.
5. Sincex < y < z, we havey < x -y by (1), andz -y < z -z by (4). Hence we havg < z - 2.

N

3.2 Tree Homomorphism

In this section, we first introduce the notion of tree homomorphism. This notion stipulates a minimum
requisite for a structure-preserving relationship between two trees. In the following two sections, By im-
posing further restrictions on the tree homomorphism, we provide two fundamental relationships between
two trees.

Definition 3.4 (Tree Homomorphism) Let S andT' be two unordered trees, amordered tree homo-
morphism' from S to T is a (set-theoretic) mappingy: V(S) — V(T that satisfies the following:

Ve,ye Sz <sy = f(x) <r f(y)].

WhenS andT are two ordered trees, we define@udered tree homomorphisfrom S to 7" by adding
the following condition to the unordered tree homomorphism.

Vo,ye Sla<sy = f(y) Ar f(@)].
For an ordered or unordered tree homomorphfsmV' (S) — V(T), we simply writef : S — T.

For a homomorphisnf : S — T, we definef(V(S)) as{f(z) € T | € S}, and abuse the notatigf(.5)
to denotef (V' (.5)).

3.2. Tree Homomorphism 69

Proposition 3.5 For two ordered treeS andT, let f : V(S) — V(T') be a mapping that satisfies the
following:
Ve,ye Slz<sy = f(x)<r f®)]

Then the following two statements are equivalent.

1.Ve,yeSlae<sy = f(y) A1 f(z)].
2. Ve,y e S[f(x) =<r fly) = =z <5yl

Proof. (2= 1): We now assume that A5 y for x,y € S. Then one oft <g y,y <g z, ory <g « holds.
It follows that

e 2 <gy = f(=)<r f()
e y<sz = f(y) <r f(z),or
e y<sz = f()Ar f).

For each case, we hayéx) £+ f(y).
(1 = 2): We omit the proof since it is similar to the converse. |

Example 3.6 For two ordered treeS andT’, Figure 3.1depicts an ordered tree homomorphigrfrom S
toT. Note that, in this example, <5 s3 andf(s2) A7 f(s3). This tree homomorphism is bijective but its
inversef 1! is not a tree homomorphism. 1

Figure 3.1. An ordered tree homomorphisfinfrom S to 7'

Definition 3.7 (Tree Isomorphism) Let .S andT be two ordered (resp. unordered) trees. okdered
(resp. unordered tree isomorphisny : S — T is an ordered (resp. unordered) tree homomorphism
such that the mappingis bijective fromV/(S) to V(T'), and the inverse mappiny ! is also an ordered
(resp. unordered) tree homomorphism.

We simply write a tree homomorphism and a tree isomorphism without “ordered” and “unordered” if
the context is clear, or both ordered and unordered are considered in the context.

In graph theory, the notion of isomorphism is defined as follows:

LetG = (V,E), andG’ = (V', E’) be two graphs. Two graph§ and G’ areisomorphig

denoted by7 ~ @', if there exists a bijection (i.e. a one-to-one and onto mapping) — V'’

such that

Va,y € V[(z,y) € E(G) <= (f(z), f(y)) € E(G")],
and such a mapping is called arisomorphism

We show that two unordered trees are isomorphic also as graphs if and only if there exists a tree isomorphism
between them.

Proposition 3.8 Let S andT' be two unordered trees. For a mappifgV (S) — V(T'), the following
two statements are equivalent.

1. fis an unordered tree isomorphism fraito 7.
2. fisabijection such thatz,y € S[(z,y) € E(S) < (f(x), f(y)) € E(T)].

70 Chapter 3. Theoretical Foundation of Approximate Tree Matching

Proof. We only show that 1 implies 2 since the converse is straightforward. Defing(S) x V(S) —
V(T) x V(T) by settingg(z, y) = (f(z), f(3)). Then it sfices to showy(E(S)) C E(T).

For any edgex,y) € E(S), let z be a node i/ (1) such thatf(z) <t z <7 f(y). Sincef~tis a
tree homomorphism, we hawe<s f~(z) <s v, and hence: = f~1(z) becausex, y) is an edge of. It
follows from z = f(z) that (f(x), f(y)) is an edge of". |

Proposition 3.9 Let S andT be two ordered trees. For a mappifig V(S) — V(T), the following
three statements are equivalent.

1. fis an ordered tree isomorphism frasito 7'.

2. fis an ordered tree homomorphism frafrto 7, and an unordered tree isomorphism fréhto
T.

3. fis abijection and an unordered tree homomorphism fébta 7" such that

Ve,ye Sle<sy = fx) <r f®)]

Proof. (1=3): It is straightforward.

(3=2): It suffices to show that <g y for anyz,y € V(S) such thatf(x) <r f(y). One ofzx <g v,
x >g Yy, x <g yandx =g y holds, and we have £s y andz ¥ y since we havef(z) <7 f(y) or
f(x) =1 f(y) otherwise. Further; %1 y sincef is a tree homomorphism of the unordered tree.
(2=1): If f(x) < f(y), thenz < y. We thus havg ~ is also a tree homomorphism. 1

Example 3.10 For unordered trees, the tree isomorphisms are not uniquely deterrfigede 3.2 shows
two tree isomorphisms frofi to itself, i.e. there exists a non-trivial automorphism. 1

a trivial tree isomorphism a non-trivial tree isomorphism
Figure 3.2. Tree isomorphisms for unordered trees.

In contrast to unordered trees, for two ordered tr€esnd 7', a tree isomorphism fron¥ to 7" is
unique if it exists. This property follows the fact that there exists a unligfimost leaffor any ordered tree
T, where the leftmost leaf is defined as the ned# 7" such that

dyeTsty<z) and Fy e Ts.t. @y <).

Hence if f is an ordered tree isomorphism fraghto 7', the leftmost node of must be mapped to the

leftmost node off".
The following proposition can be proved by the induction on the size of two orderedSraed? .

Proposition 3.11 Let S andT" bet two ordered trees. An ordered tree isomorphism f&mo 7" is
unique if it exists.

Corollary 3.12 Let T be an ordered tree. An ordered tree isomorphfsml” — T is identical to the
identity map ofV/ (1)

3.3 Tree Embedding

We introduce a variant of the tree homomorphismbeddingwhich plays a central role to define the
alignment of trees.

3.3. Tree Embedding 71

Definition 3.13 (Embedding) Let S and7 be two ordered (resp. unordered) trees. An ordered (resp.
unorderedembeddingrom S to 7" is an ordered (resp. unordered) tree homomorphfismS — T
such that

Vez,y € S[z<sy < [f(z)<r f)]

We define theesidueof f as resf) = |V(T(f(root(S)))) \ f(5)|.

It is obvious from the definition that any embedding is an injection (i.e. a one-to-one mapping), and
for any embeddingf : S — T, and any two node;,y € S, we haver = y < f(z) = f(y), and

r<sy < f(x) <t f(V).

Example 3.14 Figure 3.3shows an embeddingfrom StoT'. The residue of isres(f) = |[V(T) \ f(S)| =
{t1,t2,t3,ta, ts, te, t7, ta} \ {t2,ta, t7}| = 5.

Figure 3.3. An ordered embeddingfrom S to T'.

Proposition 3.15 Let .S andT be ordered trees, anfd: S — T be an ordered embedding. Then, for all
r,y €S, fx) 2r fy)if z <5 9.

Proof. Assume thatf(z) A7 f(y). Then one off(y) <7 f(z), f(z) <r f(v), or f(y) <r f(z) holds.
Thus one oft < y, y < z, ory <s = must hold. It follows that: As . |

Proposition 3.16 Let R, S, andT be (ordered or unordered) trees. Suppose fhatR — S and
g S — T are tree homomorphisms, i.e.

S

R T.

Then the following properties hold.

1. If f andg|sr) are embeddings, the compositefoéndg, i.e. g o f, is an embedding fronk to
T. Moreover, resf o f) = res(f) + resf| s(r)) holds.

2. If g o f is an embedding, thefis also an embedding.

Proof. 1. By Definition 3.13, for anye,y € S, if g(f(x)) <7 g(f(y)) thenf(z) <s f(y), and if f(x) <g
f(y) thenz <gr y. Thereforey o f is an embedding. Also, resé f) = |[V(T)| — |(g o H(R)| = (|[V(S)| —
SR + (VD) — lgl s (9)))) = res(f) + resg] s(m).

2. The mappingf is a tree homomorphism. Thus itfliges to show thaf(z) <s f(y) = =z <gr ¥,
for all z,y € R. Now assume thaf(z) <s f(y). Then we havg(f(x)) <r g(f(y)) sinceg is a tree
homomorphism. We obtain <y y since the mapping o f is an embedding. 1

The embedding has a universal property in the following sense.

72 Chapter 3. Theoretical Foundation of Approximate Tree Matching

Proposition 3.17 (Universal Property of Embeddings)Let R, S, andT be three (ordered or un-
ordered) trees. For an embeddifig R — 7', and a tree homomorphisgn: S — T, if g(S) C f(R),
then there exists a unique tree homomorphisns — R such thayy = f o h, i.e.

f

R—

T
“V',
e |g

S

Proof. Let us choose the unique (set-theoretic) mapgingV (S) — V(R) so thatg = f o h. We show
thath is a tree homomorphism. Letandy be two nodes irl/(S). From the definition of:, it follows
thatg(x) = f(h(z)) andg(y) = f(h(y)). Assume that: <g y, then we have(z) <r g¢(y). Sincef is an
embedding, we havie(z) <g h(y). |

Corollary 3.18 Let R, S, andT be three trees, anfl: R — T andg : S — T be two embeddings
with f(R) = ¢g(S). There exists a unique isomorphigm S — R such thayy = f o h.

The following proposition and corollary show important relations between the embedding and the
binary operator-, i.e. any embedding preserves the hierarchical order of least common ancestors between
two trees.

Proposition 3.19 For an embedding : S — T, and anyz,y € S, letz € f(S) C V(T) be the
minimum node with respect to the hierarchical ordeffaduch thatf(z) - f(y) <r z. Then the node
z is identical tof (x - y). Furthermoref(z) - f(y) <r f(z—y) holds if and only iff(z) - f(y) € f(S)
holds. (Sed-igure 3.4.)

Figure 3.4. An example of the property in Proposition 3.19.

Proof. Let z be a node inf(S) C V(T) such thatf(z)- f(y) <t z. Sincef is an embedding, we
haver-y <g f~1(2). Hencef(zx-vy) <r z. This implies thatf(z-v) is the minimumz such that
f(@)- f(y) <r z. The rest of the assertion is obvious. |

Corollary 3.20 For any embedding’ : S — T, and anyx,y,z € S, if -y <g x-z, then
f@) - fy) <r f(2)- f(2).

Proof. Since f is an embedding, by Proposition 3.19 we hg\{) - f(y) <r flz-y) <r f(x-2),
and f(z) - f(z) <r f(zx-2). If f(x)- f(2) = f(x~-2z), then there is nothing to show. Hefér-y) and
f(x) - f(z) are comparable with respect to the hierarchical ord&t.df there exists a node € T such that
f@) - f(z) <7 w <7 f(z-z), thenw cannot be mapped bf/from any node irl/(S) by Proposition 3.19,
i.e.w # f(xr-y). Hencef(x-vy) <t f(z)- f(z). Thus we concludg(x) - f(y) <t f(x)- f(2). |

3.4. Insertion 73

Note that Corollary 3.20 cannot be extended to the 4-node case, i.e. for any embgddihg- 7', even
if w-x <g y-z, the propertyf(w) - f(z) <7 f(y)- f(z) does not necessarily hold. Actualygure 3.5
illustrates an example in which, for an embeddifigtwo nodesf(s1) - f(s2) and f(s3) - f(s4) are not
comparable with respect to the hierarchical ordér jiwhile s; - s, <g s3- s4 holds.

Figure 3.5. Corollary 3.20 cannot be extended to the 4-node case.

Proposition 3.21 Let 7" be a tree, and/ be a subset of/ (7). If T[U] is a tree, then the natural
(set-theoretic) inclusiorf : U — V(T) is an embedding, and re§(= |V(T) \ U]|.

We denote this embedding &y : T[U] — T.

3.4 Insertion

Insertion of a node to a tree is known as a primitive operation used in tree edit distance. In what follows,
we show the insertion is defined as a primitive variant of the embedding. More importantly, it is shown that
any embedding is decomposed into one or more insertions.

Definition 3.22 (Insertion) Let.S andT be two trees. An embeddinfy: S — T with res(f) = 1 is
called aninsertion For an insertiory : S — T with a unique node: € V(7)) \ f(S), the insertionf is
said bez-insertion intoS, denoted by,

Proposition 3.23 For anyz € V(T) \ {root(I')}, there exist a tre€ and anz-insertionl,, : S — T.
Furthermore, the-insertion is unique up to isomorphism.

Proof. Letz be a node il (T"), andU beV(T) \ {«}. Then the natural inclusioE; : T[U] — T is an
z-insertion into7'[U] by Proposition 3.21. It follows from Corollary 3.18 that the@nsertion is unique up
to isomorphism. |

By the following theorem, we give the most important property of embeddings. That is, the embed-
ding is identical to the composite of a series of insertions. In other words, any embedding corresponds to a
transformation of a tree to another by repeatedly applying an insertion, i.e. a primitive edit operation.

Theorem 3.24 (Decomposition of Embedding) et f be an embedding frorfi to T such thatl’(T') \
f(S) = {t1,...,tn}. There exists a series of tre€g, 71, . .., T, and a series of insertion$: T; —
T,_1fori e {1,...,n} such that

1. 1T,="T,
2.T,=S,
3. (floofv)(TJ = V(TO)\{tla"'vti}*

74 Chapter 3. Theoretical Foundation of Approximate Tree Matching

4. f=fro-0fu i€,

Tn fn > Tnfl f”_l U fz Tl fl TO
Iy, I,

[ll
S T.

Proof. We apply induction om = res(f). Forn = 1, it is obvious thatf is an insertion. Now we assume
thatn > 2. Let f1 be thet;-insertion intoT;. Note thatf; can be naturally regarded as an insertion from
T to Ty by Proposition 3.16.2. Nowi(7},) C f1(71) holds. Then there exists a unique tree homomorphism
g . T, — Ty such thatf = f; o g by Proposition 3.17. Moreover, by Proposition 3.1§4s also an
embedding and regf = n — 1, andg(T;,) = V/(T1) \ {f{ }(t2), - - ., f; *(t,)} holds.

By the induction hypothesis, there exist a series of tfEeq3, ..., T, and a series of insertions
fi 1Ty — T;_1fori € {2,...,n} that satisfy the following:

1.7,=25,
2. (fa0-- 0 fi)T) = V(@) \ {f1 H(ta), - .., fr 1)},
3.9=fa0--0 fp.

Thenwe havefio---o f;)(T;) = V(To) \ {t1, ..., t;} as follows:

(fio o f)T) =AVIT)\{f), ... f1 ¢t}
= fui(T) \ {t2,... t:}
= V(To) \ {tl, to,... ,ti}.

Then we complete the proof. |

3.5 Tree Contraction

We introduce a variant of the tree homomorphisontractionalong with the embedding, which plays a
central role to define the general tree edit distance due to Tai.

Definition 3.25 (Contraction) Let .S andT be two (ordered or unordered) treescéntractionfrom S
to T is a tree homomorphisrfi: S — T such that

1. fis surjective ontd/ (7)),

2.Vz,y e S[fx) = fly) = fle~-y)=f(2)],
3. Vr,ye S[f(x) <r fly) = FzeSstf(y) =[f(z) N z<sz]

We define theluplicationof f as dupf) = {z € S| f(z) = f(par())}.

3.5. Tree Contraction 75

fy)=1(2)

Figure 3.6. The definition of contraction

The second condition means that if two nodes are mapped to one node, then the least common ancestor
of these two nodes is also mapped to the same node. The third condition with the second one means that
if any incomparable two nodes y are mapped to comparable two nodes such i@t <7 f(y), then all
the nodes on the path betwegandz (z >g x) is also mapped t@(y) (SeeFigure 3.6). Without the third
condition, mappings such as shown in Figure 3.1 are also allowed.

Example 3.26 Figure 3.7shows a contractiofi from S to T". The duplication off is dup(f) = {s2, s3, ss, 6, Sg}-
1

Figure 3.7. A contractionf from S to T’

Proposition 3.27 Let .S andT’ be two (ordered or unordered) trees. Any contracfiors — 7 satisfies
the following properties:

1. f(root(S)) = root(I),

2. If (z,y) € E(S), then (f(z), f(y)) € E(T) or f(z) = f(y),
3. For any noder € T and a node sdt/ = f~1(z) C V(S), the least common ancestor Gfis
included inU, i.e. Ica{)) € U, and

4. dup(f) = U,er /(@) \ {lca(f ~*(z))}.

Proof. 1. Itis straightforward sincg is surjective and a tree homomorphism.

1. The case off(x) = f(y) is obvious. Then assumfx) <r f(z) <r f(y) for z,y,z € S. By
Definition 3.25, we may assume< z. It follows from (z,y) € E(S) thaty <r z, and thenf(y) = f().
This implies that {(z), f(v)) € E(T).

2. Foranoder € T, letU be f~(z). Chooses € U so thats ¢g y for all y € U. We show that such
s € U is identical to Icaly). By Definition 3.25, for any nodg € U, we havef(s-y) = z, and hence
s-y=s,i.e.y <g s. Thens = Ica(lU) holds.

76 Chapter 3. Theoretical Foundation of Approximate Tree Matching

3. Lett be a node irfl’. Assume that, for: € S, f(zr) = t andz <g Ica(f~(t)). For ally such that
x <gsy <g lca(f~1(t)), we havef(y) = t sincef is a tree homomorphism. In particular, pare f—(t),
and hence

dup(f) 2 | £71@) \ lca(f ~*(t)).

teT

We have the converse sincefifz) = f(par()) = t, thenz <g lca(f~(t)), thus Icaf ~1(t)) ¢ dup(f). I

The next proposition gives the very fundamental property that any contraction preserves the least
common ancestors.

Proposition 3.28 (LCA-Preserving) Let S andT be two (ordered or unordered) trees. For any con-
tractionf : S — T andz,y € S, the following holds:

fl-y) = fx)- f).
The property is said to beCA-preserving

Proof. Sincef is surjective ontd/(T), there exists € S such thatf(z) = f(x)~ f(y). Now we choose
2’ € S such thatr’ >g z and f(z') = f(2). In the case off(z') <7 f(z), suchz’ exists sincef is a
contraction. On the other hand, in the cas¢@f') = f(z), it suffices to define’ = z. In the same way, we
can choose’ € S such thaty >g y andf(y') = f(2).
By the definition of the contraction, we hayéx’' - ') = f(z) = f(z)- f(y). Thereforef(z-y) =
I

f(@) - f(y) sincez’ -y >g x-y.

Corollary 3.29 Let f : S — T be a contraction. For any nodesy, z € S such thatt-y <g = -z,
the following hold.

1 f@) - fy) <z f(x)- f(2),

2. f(2)- f(y) = f(@)- f(2) <= [flz~y) = f(z-2),
3. fW) - f(2) = f(2)- f(2).

Proof. Straightforward from Proposition 3.28. 1

Proposition 3.30 Let R, S, andT be three (unordered or ordered) trees. For two homomorphisms
fiR— Sandg: S — T, the following properties hold:

1. If f andg are both contractions, them f is also a contraction, dupé f) = dup(f)U f ~(dup(g)),
2. If fis surjective ontd/(S) andg o f is a contraction, thep is also a contraction.

Proof. 1. Since it is obvious thag o f is surjective ontd/(T"), we verify the remaining requirements for
the contraction one by one.

First, we showg(f(x-v)) = g(f(x)) holds for anyxz,y € R such thaty(f(x)) = g(f(y)). In fact,
9(f(@-y)) = 9(f (@) - f(v)) = 9(f(2)) - 9(f (¥)) = 9(f(x)) holds by Proposition 3.28.

Next, we show that there existse R such thaty(f(z)) = g(f(y)) andx < z foranyz,y € R
such thay(f(z)) <7 g(f(y)). Sinceg is a contraction, there exist$ € R such thay(f(z)) = g(f(v))
and f(z) <s f(2). In the same way, there existsc R such thatf(z) = f(z’) andz <gr z sincef is a
contraction. Hence(f(z)) = g(f(z")) = g(f(y)) holds.

The equation dugf{o ¢) = dup(f) U f~1(dup(g)) is showed as follows. By Proposition 3.27, either

(f(x), g(y)) € E(S) or f(x) = g(y) holds for any ¢, y) € E(R). Thereforeg(f(x)) = g(f(y)) holds if and
only if eitherx € dup(f) or f(x) € dup(g) holds.

2. Since itis obvious thaf is surjective ontgf (S), we verify the remaining requirements for the contraction
one by one.

3.5. Tree Contraction 77

First, we showg(f(z)-g(y)) = g(f(x)) holds for anyz,y € R such thatg(f(x)) = g(f(v)).
Note thatg(f(z))-g(f(¥)) <7 9(f(x)- f(¥)) <r g(f(x-y)) generally holds. Sincg o f is a con-
traction, g(f(x)) - g(f () = g(f(x)- f(y)) = g(f(x-y)) holds by Proposition 3.28. Hence, we obtain
9(f (@)~ f(W) = g(f(x)).

Next, we show that there exists= R such thay(f(z)) = g(f(y)) andf(x) <g f(z) foranyz,y € R
such thayy(f(z)) <r g(f(y)). Sinceg o f is a contraction, there existse R such thaly(f(z)) = 9(f(v))
andz <g z. Thusf(z) <s f(2) holds. |

The contraction has a universal property in the following sense.

Proposition 3.31 (Universal Property of Contractions) Let R, S, andT be three (ordered or un-
ordered) trees. For a contractign R — S and a tree homomorphisgn: R — 1 such thay(z) = g(y)

if f(z)= f(y)foranyz,y € R, there exists a unique homomorphigm S — T satisfyingg = h o f,
ie.

Proof. By the premise of the proposition, we have the unique set-theoretic mappi®g— 7" such that
hof=g.

Next, we show that is a tree homomorphism. Assume thaty € R satisfy f(x) < f(y). By
assumption and Definition 3.25, we may assumer, y. Therefore, we have(x) <r g(y). Henceh is an
unorderedtree homomorphism.

When f andg are ordered tree homomorphisms, sa.idn fact, if g(x) <7 g(y), we haver <g y.
Therefore, one of(z) <7 g(v), f(x) <s f(y) andf(z) >s f(y) holds. If f(z) <s f(y) holds, we can
choosey such thatr <g y by assumption and Definition 3.25. Thus, this contradicts the assumption of
g(x) <7 g(y). In the same wayf(z) >5 f(y) does not hold. 1

Corollary 3.32 Let R, S andT be three (ordered or unordered) trees. ForR — Sandg : R — T
be both contractions such that, for anyy € R, f(z) = f(y) if and only if g(z) = g(y), there exists a
unique isomorphism : S — T such thayy = ho f.

Proposition 3.33 Let 7" be an (ordered or unordered) tree, dhde a subset oV (1) including the
root of ". Assume thafl'[U] is a tree, and leff be a surjective mapping from (7) to U such that
f@)=xforallz € U,andf(z) = f(par()) forallx ¢ U. Thenf : V(T) — U is a contraction with

dup(f) = V(T)\ U.

We denote this contraction Wy : 7' — T[U].

Proof. First, we show thaf is a tree homomorphism. Let y be two any nodes i (7"). By definition,
there existr’,y’ € T such thatr <7 2/, f(z) = 2/, y <r ¥/, andf(y) = y'. In other words;’ is the
minimum ancestor of such that’ € U, andy’ is the minimum ancestor af such thayy € U.

If x <r y, thenz’ <r y'. Thereforef is an unordered tree homomorphism. Also, for ordefed
a2’ <7 ¢, thenxz <1 y. Thereforef is an ordered tree homomorphism.

Finally, we verify thatf satisfies the conditions for the contraction.

1. The mappingf is surjective by assumption.
2. If 2’ =4/, thenz -y <t 2’ = ¢/. Therefore,f(x) <t f(z-y) <r f(z') = f(x) holds.
3. We haver < 3’ sincez’ <r %/.

We thus have the assertion. |

78 Chapter 3. Theoretical Foundation of Approximate Tree Matching

3.6 Deletion

Deletion of a node, as well as insertion of a node, is a primitive edit operation to transform a tree to another.
In this subsection, we formally define the primitive edit operation of node-deletion as a primitive variant of
the tree homomorphism. At the same time, we present a property that characterizes the contraction from a
operational point of view. We thus show that any contraction is identical to the composite of one or more
deletion.

Definition 3.34 (Deletion) Let S andT be two (ordered or unordered) trees. A contractfanS — T'
with |dup(f)| = 1 is called adeletion In particular, f is called anz-deletion, if dupf) = {«}, and
denoted byD,..

Proposition 3.35 For anyz € S such that: # root(S), there exist a tre@ and anz-deletionf : S — T.
Furthermore, such ardeletion is unique up to isomorphism.

Proof. LetU beV(S)\{z}. ThenCy : S — S[U]is anz-deletion by Proposition 3.33. By Corollary 3.32,
anz-degeneration is unique up to isomorphism. 1

In the same way as an embedding is decomposed into insertions, a contraction is decomposed into
deletions.

Theorem 3.36 (Decomposition of Contractoin)Let f be a degeneration froifi to 7" with dup(f) =
{t1,...,tn}. There exist a series of tre&%, 11, ..., T, and a series of deletion§ : T, — T;,1 for
i € {0,...,n — 1} such that

1. Tp = S,

2.T,=T,

3. dup(fi—10---0 fo) = {t1,...,t:},
4., fzfnflo"'ofol ie.

To fO T]_ fl o fn—2 Tnfl fn—l Tn
Dy Dy, Dy,

Lo

I I
S T.

Proof. We prove the assertion by induction anWhenn = 1, f is a deletion by definition.
In the following, we assume > 2. Let fy : T — T3 be D,,. By Proposition 3.31, there exists:
T1 — T such thatf = g o fo. By Proposition 3.27g is a contraction with dug) = dup(fo) U fo‘l(dup(q)).
Furthermore, dug(= {fo(t2), ..., fo(t»)} holds. In fact, if fo(t1) € dupg, then par{;) € dup(f).

Hencefy(t1) € {fo(tz), RV fo(tn)}
Thus, by applying the induction hypothesigtdhere exists a series of trégs T3, . . ., T;, as follows:

1.T7,=T,
2. dup(fi—10---0 f1) = {fo(t2), ..., fo(t;)} fori € {2,...,n — 1}, and
3. g=fp_10---0f1.

Obviouslyf = go fo = fn_10---0 fo holds. In addition, the following holds.

dup(f;_1 0o fio fo) = dup(fo) U fo (dup(fi—1 0+ o f1))
= {tla"'ati}

We thus have the assertion. |

3.7. Duality between Embedding and Contraction 79

3.7 Duality between Embedding and Contraction

The embedding and the contraction satisfy a certain duality property. In this subsection, we show the duality
between embeddings and contractions.

Theorem 3.37 (Duality Theorem) For two (ordered or unordered) tregsandT’, the following prop-
erties hold. (Se€igure 3.8)

1. For any contractiorf : S — T, there exists a unique embedding T — S such thatf o g is the
identity map onV (T') andg o f is the identity map o (S) \ dup(g).

2. For any embedding : T' — S such thaty(root(I")) = root(S), there exists a unique contraction
f 8 — T suchthatffog is the identity map o (T") andgo f is the identity map oy (S)\dup(f).

3
S contraction T

P ——

« I
embedding

Figure 3.8. The duality between contractighand embedding

Proof. 1. LetU beV(S)\ dup(f), andh : S[U] — S be the embedding defined by Proposition 3.21. Then
f o his an isomorphism. In fact, singéo i : S[U] — T is a bijective tree homomorphism, itffiges to
show thatr <g y holds if f(h(z)) <r f(h(y)) for anyz,y € S according to Proposition 3.8).

By definition of the contraction, there existse V(S) such thath(z) <g z and f(h(y)) = f(2).
Sinceh(y) = lca((f ~X(f(h(y))))), we haveh(z) <5 z <g h(y). Hencex <g y sinceh is an embedding.
Thereforeg = h o (f o h)~! is an embedding frorff” into S, and the rest of the assertion is obvious.

2. LetU beg(T) andh : S — S[U] be the contraction defined by Proposition 3.33. In the same way as the
proof to (1), it is shown thak o g is an isomorphism. Thereforg,= (h o g)~* o h is a contraction front
onto7’, and the rest of the assertion is obvious. 1

In the rest of this chapter and the next chapter, we use the following notation.

® By f, we denote the embedding that is the duaf of the sense of Theorem 3.37, providédS — T
is a surjective contraction.

¢ By g, we denote the contraction that is the duaj @f the sense of Theorem 3.37 providgdT — S
is an embedding such thefroot(T")) = root(S).

Example 3.38 (Tai Mapping as a Common Subtree Pattern)We can define Tai mapping by using the
notions introduced in this chapter. Recall that an alternative view of Tai mapping is a common subtree
pattern shared in two trees. Then if we obtain two isomorphic trees by repeatedly deleting nodes from each
tree, the corresponding nodes in the isomorphic two trees forms a Tai mapping. From this observation, we
can give an alternative definition of Tai mapping as follows.

Definition 3.39 (Tai Mapping by Common Subtree Pattern) A tree mappingV/ from R to S is aTai
mappingif there exists a tripletq, f, g) that satisfies the following.

1. f: R — Tis acontraction.
2. g: S — T is acontraction.

80 Chapter 3. Theoretical Foundation of Approximate Tree Matching

3. M = {(Ica(f ~Y(z)),Icag—*(x))) | = € T’.

R M S

T

T.
The triplet (7', f, g) is called acommon subtree pattebretweenk and.S on M.

3.8 Summary

Figure 3.9 llustrates our algebraic framework of approximate tree matching. In this chapter, we have
established a theoretical foundation of edit-based approaches to approximate tree matching, which bridges
the gap between operational semantics and declarative semantics of tree edit distance. This framework
enables us to study mathematically the relationship among approximate tree matching methods defined in
various ways.

Tree Homomorphism
(Definition 3.4)

i

Tree Isomorphism

. Definition 3.7 .

Embedding (Definition 3.7) Contraction

(Definition 3.13)) (Definition 3.25)
Duality
Theorem 3.24 ® (Theorem 3.37) ® Theorem 3.36
Insertion Deletion

(Definition 3.22) (Definition 3.34)
Alignable mapping Tai mapping
(Definition 4.10) (Definition 3.39)

Figure 3.9. Algebraic formulation of approximate tree matching

Chapter 4

Relationship Analysis among
Tree Edit Distance Measures

In this chapter, by comparing tree mapping conditions of a variety of tree edit distance measures, we reveal
the relationship among them. First, we prove the equivalence between the constrained mapping and the
structure-respecting mapping. Secondly, we show that the symmetric version of structure-preserving map-
ping is equivalent to the constrained mapping. In addition, we prove that the definition of less-constrained
mapping due to Lu [LSTO1] turns out to be the definition of constrained mapping, and show the correct
definition of less-constrained mapping.

Recall that the explicit definition of alignable mapping has remained unknown. We address this
problem by using the algebraic framework developed in Chapter 2. Finally, we show some new facts on the
classes of tree mappings, and summarize the hierarchy of tree mappings.

4.1 Constrained and Structure-Respecting Mappings: C st = SR

We show the equivalence between structure-respecting and constrained mappings with a few other equiva-
lent tree mappings.

Proposition 4.1 (Constrained Mapping & Structure-Respecting Mapping) For a Tai mappingV/,
the following are equivalent:

1. V(s1,t1), (s2,t2), (s3,t3) € M,

s1-52 < s1-s3 A (Vi,j € {1,2,3} s; £ s;)
= 1l <t1-t3 A (V’L,] € {1, 2, 3} t; £ t]’).
2. V(s1,t1), (52, t2), (53, 3), (54, ta) € M,

s1-8p=s3-54 N (Vi,j€{1,...,4} s; £ s)
< ti-tr=tz-ts N (Vi,j € {1,...,4} t; 7ftj).

3. For any 61, t1), (s2,t2), (s3,t3), (54, t4) € M,
S1-82 < s3—84 N (Vi,j € {1, .. ,4} si £ Sj) > t1-ty <tz-ta ANVi,j € {1, .. ,4}ti e tj).
4. M is structure-respecting, i.8(s1, t1), (s2, t2), (s3,t3) € M

sp~sp=s1-s3 N (Vi,j € {1,2,3} s; £ s)
= ti-tr=ti-t3 A (Vi,j € {1,2,3} t; £ t;).
5. M is constrained, i.e.

V(s1,t1), (52,12), (53, t3) € M [s3 < 51- 82 <= t3 <t1-t3].

81

82 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

Proof. (1 = 4): We prove the contraposition 6f - s, = s1-s3 = t1-t, = t; - t3 under the condition
that any ofsy, s, s3is not a proper ancestor of the otherst i t, # t1 - t3, we may assumig - t, < t1-t3
sincet; -t, andt; -tz are comparable.s; - s, < s1-s3 and therefores; - s, < s1-s3 immediately
follows the condition (1).
(4 = 5): Assume thats < s;-s,. Note that, ift; andt, - ¢, are comparable, thery < ¢1 -, holds. In
fact, if t3 > t1 -1y, thensz > s; andsz > s, holds, which contradicts the assumptionsgf< s; - s5.
Hence, to show the assertion, itces to verify thats is comparable with; - ¢5.

If some two ofsy, s2, s3 are comparabless is comparable withs; or s, (if s3 < s, for example,
s3 < 81— 82 = sp holds). Thereforetz is comparable with; - ¢, by the definition of the tree mapping.

Suppose that any two 6f, s», s3 are not comparable with each other. We may assumesthat, =
s1— s3 without loss of generality, and heneg-t, = t; - t3 sinceM is structure-respecting. In particular,
t3 is comparable with; - 5.
(5 = 1): Assume that; - s, < s1-s3 and any ofsy, sp, s3 is not a proper ancestor of the others (and
therefore, any ofy, t,, t3 is not a proper ancestor of the others).

Then,t3 £ t1 -, holds. In fact,

(i) if t3 < t1-to, thensz < s1-s2 holds by (5);

(i) if t3 = t1 -y, eithersgz = s Or s3 = s, holds since3 # t1 andtz % to.
Any of the above is a contradiction to the assumptionspf s, < s;-s3. Hence, we conclude that
t1—tr < t1-13.
(1 and 4= 2 and 3): By Proposition 3.1, we assume -s3 = s3-—s4 and therefore; -tz = t3-t4.
t1 -ty < t1—t3 follows s; - sy < 51— 53, andty -t = t1 —t3 dOESS, - 55 = 51 - s3.
(2= 4)and(3=-1): To prove this, it stfices to lets; andsz be equal, and heneg andtz be also equal. I

Now we have proved that the constrained mapping is equivalent to the structure-respecting mapping,

Cst = SR

4.2 Structure-Preserving and Constrained Mappings: SP 2 Csrt

Before proving the relationship between the structure-Preserving mapping and the constrained mapping,
we simplify the definition of structure-preserving mapping. From the definition of left-to-right preorder, the
following holds for any nodes; ands; in an ordered tre€ (SeeFigure 4.1):

rl(s1) <s s2 <= s1 <35 S2.

Figure 4.1. Left-to-right preorder and sibling order

Lemma 4.2 For a Tai mappingy/ from S to 7', the following holds:

Vs1,52 € S [Ru(s1) # L A Rar(s2) # L = [Rr(s1) <1 Rar(s2) = s1 <5 52]].

4.3. Strongly Structure-Preserving and Constrained Mappings: SP® = Cst 83

Proof. We consider only1, s, € S such that R;(s1) # L and Ry/(s2) # L. Then, there exist] <g s1
ands, <g s> such thats}, s, € MY, Further, we have) <g s, since Ry(s1) < Ras(s2). This implies
thats; =g s never happens.

Therefore, the definition of structure-preserving mapping in Definition 2.61 is simplified as follows.

Definition 4.3 (Structure-Preserving Mapping (2)) For two treesS andT’, a Tai mappingV/ from S
to T is structure-preserving if the following condition is satisfied:

Vs1,s2 € S [Ru(s1) # L A Ry(s2) # L = [s1<g 52 = Ru(s1) <r Ru(s2) 1]

By using this, we prove the following proposition.

Proposition 4.4 For a Tai mapping\/, if M is constrained, thef/ is structure-preserving, i.e.

SPD Csr.

Proof. Assume thatV/ is a constrained mapping frosito 7. We consider only nodes;, s, € S such
that Ry(s1) and Ry (s2) are well-defined, i.e. R(s;) # L fori € {1,2}. Then, Ry(s1) and Ry (s2)
respectively coincide withy; -y, and y3-y4 such thatr; -z, <g x; andzz-z4 <g x, for some
(z1, y1), (x2,92), (x3,y3) € M. The hypothesis; <g s, implieszi -z, <g z1-x3 andzz-z4 <g
11— T3.

If none ofz; fori € {1,...,4} is an ancestor of the otherg, -y, <7 y1-ys andys-ys <t y1-y3
hold, sinceM is constrained. Therefore,)Rs1) < Ras(s2) immediately follows.

To complete the proof, It $lices to consider the following cases.

() x1 >s 2, andxz andx4 are not comparable with respect to the hierarchical order.
(b) 1 >5 22 andxzz >g 4.
(c) Two nodesr; andz, are not comparable with respect to the hierarchical orderzanes x4.

Case (a): Any two of x1, 3 andx4 are not comparable, and henge-ys <1 y1-ys holds, sinceM is
constrained. Thep; <r y1-ys follows from the hypothesis that/ is a Tai mapping. Therefore,
Rar(s1) = y1 <1 y3-ya = Rus(s2).

Case (b): Since Ry(s2) = y3 holds, the assertion immediately follows from the hypothesisithés a Tai
mapping.

Case (c): The proof is symmetrical to the proof for Case (a).

Then we have proved SP Csr. |

We have already seen SP Csr since the structure-preserving mapping is asymmetric while the
constrained mapping is symmetric in Proposition 2.63. Hence) Rr is concluded.

4.3 Strongly Structure-Preserving and Constrained Mappings:
SP’ = Cst

The structure-preserving mapping is almost the same as the constrained mapping in its concept except for
the asymmetricity of structure-preserving mapping.

Here we prove that the symmetric version of structure-preserving mapping is equivalent to the con-
strained mapping. In the same way as the previous section, we simplify the definition of strongly structure-
preserving mapping in Definition 2.64 as follows.

Definition 4.5 (Strongly Structure-Preserving Mapping (2)) For two ordered tree§ andT’, a Tai
mappingM from S to 7' is strongly structure-preservinifjthe following two conditions are satisfied:

1. Vs1,82€ 8 [RM(S]_) # L ARy(s2) # L = [s1 <552 = Ru(s1) <r Ru(s2) H
2. Vti,tp €T [RM(tl) 2L ARyt # L = [t1 <5t = Ru(t1) <7 Ras(t2)]]

84 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

Proposition 4.6 For a Tai mappingM, M is constrained if and only if\/ is strongly structure-
preserving, i.e.
SP = Csr.

Proof. From Proposition 4.4, SPD Csr is obvious. Then we show that if/ is strongly structure-
preserving, thed is constrained, i.e. SRC Csr.
We here employ the following equivalent definition of constrained mapping (See Proposition 4.1):

V(s1,11), (s2,t2), (s3,t3) € M
[s1-s2 <s1-s3 A (Vi,j €{1,2,3}s; £ 55) <> t1-ta<ti-tz A (Vi,j € {1,2,3} t; £ t;)].

Assume that\/ is a strongly structure-preserving mapping fréhto 7'. Let s; - s, <g s1- s3 for
(s1,t1), (s2,t2), (s3,t3) € M such that none ofy, sp, ands; is an ancestor of the others. Without loss of
generality, we may assume that <s s <s s3. Letx andz’ be s; - s, andss, respectively. Then, we
havex < 2/, and therefore, R (s) < Ras(z’) sinceM is strongly structure-preserving. It follows from
t1 -ty <7 Ry(x) andtz < Ry, (z’) thatty - t, <7 t; - t3 holds. (Recall that it < y, thenz < z -y and
y < x -y hold.)

In the same way, by assuming-t, <r t; —t3for (s1, t1), (s2, t2), (s3, t3) € M such that none ofy,

s», andsz is an ancestor of the others, we haye s, <g s1-s3.
Thus, M is constrained, i.e. SRC Csr. |

4.4 Less-Constrained Mapping Revised

As mentioned in Section 2.8.6, Definition 2.70 due todtwal. [LSTO1] does not relax the condition of the
constrained mapping. In fact, it is easy to show that the definition of less-constrained mapping de to Lu
al. is exactly equivalent to the definition of constrained mapping as follows.

Proposition 4.7 The condition for less-constrained mapping in Definition 2.70 is equivalent to the
condition of the constrained mapping, i.e. the following two conditions are equivalent.

1. for all (s1, t1), (s2, t2), (s3, t3) € M such that none of;, s, andsg is an ancestor of the others,
S1-82 < 81-83 N S1-83=82-83 <= l1-to <t1-1t3 N t1-t3=1tr-13.

2. V(s1,t1), (52, t2), (s3,t3) € M [83 < 51~ 52 = t3 < t1-1y].

Proof. Definition 2.70 is reduced to a more simple form of condition by Proposition 3.1(11)j.ey; <
x;—z; is implied byx; - z; = y; -z for i € {1,2} in Definition 2.70. Therefore, it is shown that the
condition due to Luet al. is equivalent to that of the structure-respecting mapping in Definition 2.69.
Hence, the condition due to let al. is equivalent to the condition of constrained mapping. 1

We give a correct definition of the less-constrained mapping as follows.

Definition 4.8 ((Revised) Less-Constrained Mapping)A Tai mappingM is less-constrainedf the
following condition holds:

V(s1,t1), (52,t2), (83, 13) € M [s1-52 < s1-83 = ta-t3=1t1-13].
It is easy to confirm that this definition satisfies both cases in Figure 2.32(a) and (b). The revised

definition of less-constrained mapping may seem somewhat incomplete since is asymmetric. However, by
the following proposition, the symmetricity of the mapping condition is satisfied.

Proposition 4.9 The following two conditions are equivalent for a Tai mapping

1. V(s1,t1), (s2,t2), (s3,13) € M [s1-52 < s1~83 = to—t3=t1-13].
2. V(s1,t1), (52, t2), (s3,t3) € M [t1~tr < li~l3 = sy~ 53 =51~ 53].

4.5, Constrained and Less-Constrained Mappings: Cst? 2 Cst 85

Proof. By symmetry, it stfices to prove (1= 2). Then, by assuming the condition 1, we show that
t1 -ty £ t1-t3if so—s3 # s1-s3. Note thats, - s3 ands; - s3 are comparable.
e |f s, —s3 < s1-s3, then we have; - ¢, = t; - t3 by the condition 1.
o |f s,—s3 > s1-s3, then we have; -t, = to-t3 by the condition 1. It follows that; - t, < ¢ -t3.
Hencet -tz < t1-to.

Therefore, we have the condition 2. |

4.5 Constrained and Less-Constrained Mappings: C st? 2 Csr

It is obvious that the constrained mapping is not the less-Constrained mapping as shown in Figure 2.32(b).
Then it siffices to prove the following proposition in order to shosCD Csr.

Proposition 4.10 A constrained tree mappinty is less-constrained, i.e.

Cst! D Csr.

Proof. Consider a constrained mappihf. We assume that - s, < s1 - sz holds for (s1, t1), (s2, t2), (s3,t3) €
M, we prove that, - t3 = t; - t3 holds. If none ofs; for i € {1, 2,3} is an ancestor of the others, we have
t1 -t < t1 -tz sinceM is constrained. Thereforé; - t3 = t1 - t3 holds.

The remaining cases are as follows:

1. 51 < sp0rsy < sy,
2. 51 < szands; < s3.
For the case (1), we can assumie< sp, and therefore; < t,, without loss of generality. Since is not
an ancestor of3, ¢, is not an ancestor @§. Therefore, we havg - t3 > t, andt, - t3 < t1 -tz holds. The
opposite inequality follows frony < t,.
In the case (2), - t3 = t1 - t3 = t3, Sincety < tz andty < t3
Thus, we have shown thaf is less-constrained. |

4.6 Alignable and Less-Constrained Mapping: A LN = Cst#

In this section, we prove that the alignable mapping is equivalent to the less-constrained mapping, i.e.
AL~ = Cst®. The definition of alignable mapping is, however, not explicitly known. Then we first formu-
late the alignable mapping by the algebraic framework developed in previous chapter before proving the
equivalence.

4.6.1 Algebraic Formulation of Alignable Mappings

We study the property alignable mapping by using the algebraic framework introduced in Chapter 3. We
redefine the alignable tree mapping as follows.

Definition 4.11 (Alignable Mapping) A tree mappingM from S to T is alignableif there exists a
triplet (R, f, ¢) that satisfies the following.

1. f:S — Risanembedding.
2. g : T — Ris an embedding.
3. f(x) = g(y) for (z,y) € M.

R
/ \
S d T.
The triplet R, f, g) is called araligned treeof S and7 on M.

86 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

Let us show several properties of alignable mappings.
Lemma 4.12 Note thatM’ be a subset al/. If M is alignable, therd/’ is also alignable.
Proof. An aligned tree o/ is also an aligned tree al’. |

Lemma 4.13 For an alignable mappingy/ with an alignment treeR, f, g), (s, t) = (s, g(f(s))) holds
for any (s,t) € M, whereg is the contraction such thato ¢ is the identity map of".

Proof. The assertion is obvious singe g is the identity map of". 1

Folding Two Sibling Subtrees. Let 7" be a rooted treey andw be two nodes irf” such that par() =
par(w), andv be a new node not if (T'). We define a poset®®) = (V (1)), <)) as follows.

o V(T)) = V(T) \ {v,w} U {v}.

e For any two nodes, y € V(T)%), g(;fw) y holds if and only if any of the following holds.
1. z#v,y#vandz <7 y.
2. x=vandy >r v (i.e.y >r w).
3. y=v,andz <rvorxz <r w.

Figure 4.2illustrates an example of the folding Two sibling subtrees.
Lemma 4.14 T) = (V(T)®), <) is a rooted tree.

Proof. First, we show that <" 2 if # <{"") y andy <{*) .

e If z,y,z # v, thenz <p y andy < z hold, and therefore < z holds.

e |f x = v, thenv <t y andy <t z hold. Therefores <7 z holds.

o If y=v,thenz <rvorz <y w,andz >r vandz > w hold. Thereforer <; z holds.
e If 2 = v, thenx <7 y, andy <7 v ory <r w hold. Thereforer <7 v orz < w holds.

Hence we have <) : for each case.

Secondly, we show thaf{)7,., = {y € V(T)®) | y >rww x} is a chain for every node. Let
us choose arbitrary two nodgsz € (Tx)r. If y # v andz # v, theny > z andz >7 x for x # v, or
y > aandz > vforz = v hold. Inany casey <7 z ory >r z holds. Thus we have <{*) = or
Yy 2(79“’) 2. If y =v, thenz <y vorz <; w, andz <7 z hold. Thereforeone af <7 z,w <7 2,z <p v
andz <7 w holds. Hence we have <{"") > ory >"*) », I

T = Tw)

Figure 4.2. Folding two subtreed'(v) andT'(w)

4.6. Alignable and Less-Constrained Mapping: AN = Cst? 87

Proposition 4.15 Let S andT be two trees. Any singleton tree mappin§ = {(s,¢)} from Sto T is
alignable for any two nodesc< S andt € T'.

Proof. We start by constructing a tré® = (V(R'), <gr:) from S andT as follows.

e V(R)=V(S)uV(T).
e 1 <g y holds for any two nodes, y € R’ if and only if any of the following holds.
1. z,y € Sandx <g y.
2. x,y € Tandz <t y.
3.z € Sandy € ([t)r.
4. z € T(t)andy € (Is)s.

Note thatR’ = (V(R'), <gr) is a rooted tree. We have pay(= par¢) in R’ since (s)r = ([t)r =
(1s)s U (1t)r by the definition of<g:.

Thus, we can apply Lemma 4.14 to the ttBg andR = (V(R),<gr) = R'®? is a rooted tree.
Moreover, it is easy to see that natural inclusion mapsV(S) — V(R) andg : V(T) — V(R) are
embeddings. In particular, singés) = g(¢) holds,M = {(s, t)} is alignable. 1

Lemma 4.16 Let M be an alignable mapping from a tréeto a treeT'. For two treesS and S’, let
h:S — S’is an embedding. For a tree mappihf the following are equivalent.

1. M is alignable.
2. M’ = {(=),y) | (z,y) € M} is alignable.

Proof. (2 = 1) By the definition of the alignable mapping (Definition 4.11), it is obvious.
(1= 2)Let (R, f,g) be an aligned tree of/. Then the embeddingé: S — R andg : T — R satisfy
f(s) = g(t) forall (s,t) € M. By Theorem 3.24, it sices to consider the following two cases.

1. his not surjective and resj = 0.
2. h(S) = S’ andrest) = 1.

Case 1: Letting V(R') = V(S) \ h(S) U V(R), we define the relatiorz. over V(R’) such that, for
x,y € V(R'), x <g y if and only if one of the following holds.

() z,y € V(S)\ h(S) andx <s y;
(i) z,y € Randx <gr v;
(i) z € Randy € (Th(root(S)))s:.

Note thatR’ = (V(R'), <gr') is a tree. Let
a:(VSH\hS) — V(R) and g:V(R)— V(R)
denote the natural inclusions. We defifie V(S’) — V(R') with
, a(x) if € V(S)\ h(S)
fi(w) = _1 :
B(f(h=(x))) if x € h(S5).
Also, we defingy’ : V(T) — V(R') with ¢’ = B0 g. Itis easy to see that botff andg’ are embeddings.
Sincef’(h(s)) = B(f(h~1(h(s)))) = B(f(s)) = B(y(t)) = ¢'(t), we have the conclusion in the case of (1).
Case 2:In the following, we use the following notation.

e v: V(S)\ h(S) = {v}.
* w: par@) = h(w).
e ¢;: ch() = {h(c1),...,h(cn)}-

Now, lettingV (R’) = V(R)U{v'}, we define the relatior - overV(R’) such that, forr,y € R, 2 <p y
if and only if one of the following holds.

88 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

1. z,y € Randz <pg v.
2. z =v andy >p/ f(w).
3.z € R,and3z € R[f(c;) <gr' 2 < f(w) A z <pr z]andy =’

Note thatR = (V(R'),<g/) is a tree

Letting o : V(R) — V(R’) be the natural inclusion, we defin@ : V(S') — V(R') with f'(z) =
a(f(h1(2))) if x £ vandf’(v) = v'. Further, we defing’ = aog: V(T) — V(R’'). Note that bothf’ and
¢' are embeddings. Singé(h(s)) = a(f(h~1(h(s)))) = a(f(s)) = a(g(t)) = ¢'(t), we have the conclusion
in the case of (2). |

This lemma implies that if\/ is alignable after inserting nodes, it is also alignable before applying
the insertions.

By the definition of tree mapping, without loss of generality, we may assume that, ior A if
s = root(S), thent = root(l').

Lemma 4.17 Let (R, f, g) be an aligned tree of/. Then there exisf’ andg’ such that R, /', ¢’) is
also an aligned tree o/ and f’(root(S)) = ¢’(root(I")). In particular, the following are equivalent.

1. M is alignable.
2. M U {(root(S), root(T")) } is alignable.

Proof. Let (s,t) € M. Two nodesf(root(S)) andg(root(I)) are comparable i since they are ancestors
of f(s) = g(t). If f(root(S)) = g(root(T")), there is nothing to prove.

Without loss of generality, we may assume tlfiioot(S)) < g(root(T)). Definef’ : V(S) — V(R)
with f'(z) = f(x) if = # root(S) and f'(root(S)) = g(root(T)). In the following, we show thaf’ is an
embedding. First, assume thak s y for z,y € S. If y # root(S), thenf’(z) <gr f'(y) holds sincef is a
tree homomorphism. lf = root(S), thenf'(z) = f(x) <gr f(root(S)) <r f'(root(S)) holds. Thusf’ is a
tree homomorphism. The property< y if f'(x) < f'(y) is also easily proved. Consequently, we see that
fis an embedding.

Since the (2x(1) follows from Lemma 4.12, it dfices to show (B>(2). As shown in the first
part, if (R, f, g), we have another aligned tre®,(f’, ¢’) such thatf’(root(S)) = ¢'(root(l)). Therefore,
M U {(root(S), root(I"))} is alignable. 1

4.6.2 Equivalence between Alignable and Less-Constrained Mappings

In this section, we prove that the alignable mapping is equivalent to the less-constrained mapping.
In the following lemma, we prove that an alignable mapping can be constructed from tree mappings
between subtrees.

Lemma 4.18 Let M be a tree mapping from a treégto a treel’. Let S; andT; be as follows:

e S;: the treeS(s;) for ch(root(S)) = {s1,...,sm}, and
e T;: the treeT'(t;) for ch(root@)) = {t1,...,tn}.

By symmetry we assume that < n. By M; C V(S;) x V(T;) fori € {1,...,m}, we denote the
tree mapping(s,t) € M | s € S; andt € T;}. If M = J"; M, and each\/; for i € {1,...,m} is
alignable, thenV/ is also alignable.

Proof. Let (R;, f;,¢9;) be an aligned tree af/;. Hence the embeddings : S; — R; andg; : T; — R;
satisfy f;(s) = ¢:(t) for all (s,t) € M; fori € {1,...,m}. Now we let

V(R) = {ryulJv@myu |J v,
=1

i=m+1

wherer is a new node not it$ nor 7. We define the relatiok r so that, forz,y € R, z <g y if and only
one of the following holds.

4.6. Alignable and Less-Constrained Mapping: AN = Cst? 89

1.1<i<m,z,y € R;andx <pg, y;
2.m<i<n,z,y€T;andx <, y;
3.y=r.
Note thatR = (V(R), <g) is a tree.
Leta; : V(R;) — V(R)fori e {1,...,m}andg; : V(T;) — V(R)forj € {m+1,...,n} bethe
natural inclusions. Thus we defirfe: V' (S) — V(R) andg : V(T') — V(R) as follows:

fz) = {ai(fi(x)) if z€8;

r if = =root(s),

ai(gi(x)) if zeT;forie{l,...,m}
g(z) = < Bi(x) if zeT,forie{m+1,...,n}

r if = = root(S).

It is easy to see that andg are embeddings. Singds) = a;(fi(s)) = a(g:(t)) = g(t) for (s,t) € M;, the
lemma is shown. i

Now we are ready to prove the following important theorem.

Theorem 4.19 For any tree mappind/, the following two properties are equivalent, i.exd= Cst*.

1. M is alignable (in Definition 4.11).
2. M is less-constrained (in Definition 4.8).

Proof. (1=2): Let (R, f, g) be an alignment oM. Thenf : S — R andg : T — R are embeddings such
that f(s) = g(¢) for all (s,t) € M. Furtherg denote the contraction such that g is the identity map of”
(Theorem 3.37).

Suppose thats, t1), (s2, t2), and @3, t3) are any three elements df such thats; - so < 53— s3. We
havef(s1) - f(s2) < f(s1) - f(s3) by Corollary 3.20, and thereforgs,) - f(s3) = f(s1) - f(s3). Also, we
haveg(f(s2)) - 9(f(s3)) = g(f(s2) = f(s3)) = g(f(s1) - f(s3)) = g(f(s1)) - g(f(s3)) by Proposition 3.28.

Sinceg(f(s1)) = t1, g(f(s2)) = t» andg(f(s3)) = t3 hold by Lemma 4.13, we conclude that-t3 =
t1 —t3. Derivation ofs; - s3 = s1 - s3 fromty —t, < t; -tz is shown in the same way.

(2=1): We prove this assertion by induction on the size of the tree mappingn the case ofM| = 1,
this assertion directly follows Proposition 4.15.
Let|M| > 2 for the induction step. Le¥/ be the set of node paifgs1, t1), - - -, (Sn, tn)}s

X = {51, .. .,Sn} CV(Y), andY = {tl, ce. ,tn} C V(D).

It suffices to prove the assertion of the theorem under the hypothesis th&t) lea(root(S) and
Ica(Y’) = root(T). In fact, for the embeddings

o= EV(S(Ica(X)) . S(Ica(X)) — S, and
B= Evayy: T(cal)) —T,

Lemma 4.16 asserts that, M’ = {(a~(s), 371(t)) | (s,t) € M} is alignable, ther/ is alignable.

Also, we may assume thaf does not contain (roaf(), root(Z")) since if M contains it, we have only
to eliminate it by Lemma 4.17.

We now chooseX, = {s, ..., si}, by reorderings;’s if necessary, so that

e i >1,
® |ca(Xy) is not the root of9,
e foranyz € X \ Xy, lca(Xy U {z}) = root(S).

Note thatk < n. Let us denote by, the set of node$t, . . ., tx } corresponding toYy.

90 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

Claim 1 Foranyi < k andj > k, the nodes; - s; is the root ofS.

Proof. The two nodes;; - s; and Ical;) are comparable since € X;. Now assume that
si~s; < lca(Xy). It follows that Icaly, U {s;}) = Ica(X}). This contradicts the definition of
Xj. Hence Ica;) < s;-s;, and in particular; - s; = Ica(X; U {s;}). This implies that

s; —s; is the root ofS. |

Let A = {z € ch(root@)) | F[Ll <i <k A s; <z]},andB = {z € ch(root@)) | Jj[k <j<n A s; <
x]}. We haveA N B = () since ifx € AN B, we haves;-s; < zforl <i < kandk < j <n,asis
contradictory to Claim 1.

Thus, by inserting nodes as children of réft({f necessary, we may assume the following properties
(Lemma 4.16 asserts that,/ is alignable after insertion of nodes, it is alignable without the insertion):

e the children of rootf) are only two nodes andw,
® |ca(Sk) <w,
e |ca(X \ Sk) < w.

Now, to apply the similar proof t&}, we claim the following.

Claim 2 Foranyi < k andj > k, the node; - t; is the root ofT".

Proof. We start with showing that, for any < k andj’ > k, t;-t; = t; - ¢;,. By Claim 1,
we now haves; - sy < s;—s;. Hence, sincél/ is less-constrained (Definition 4.8); - t; =
t;-t; holds. In the same way, we have-s;; < b < s —s; and therefore; —t; = t; ;.
Hence, we conclude, -t; = ¢; -t;;. Hence we have; -t; = t; —t;.. Next, we show the
assertion of the claim. Sinde-t; = ¢, -t; forall ' < k andj’ > k, we have Ica{’) <
t;-t;. Since Icay’) is the root ofl’, the node; - ¢; is also the root of . |

Therefore, in the same way as the casé dby inserting nodes as children of rdb)(if necessary, we may
assume the following properties:

e the children of rooff) are only two nodes’ andw’,
e lca(Yy) </,
e ca(Y \ Vi) <w'.

By the induction hypothesis\{;,={(s1, t1), ..., (sk, tx)} is an alignable mapping frorfi(v) to T'(v"), and
M \ My is an alignable mapping frorfi(w) to T'(w’). Then, by Lemma 4.18} is an alignable mapping
fromStoT. 1

For ordered trees, an algorithm for computing a less-constrained edit distance was presented by
Lu et al.[LSTO1]. As in The time complexity of the algorithm is, for two tréBsand T,

O(|T1| - |T2| - deg(ly)® - deg(l%)® - (deg(y) + deg (%))

. By Theorem 4.19, we can immediately improve this algorithm because there is afii@esnealgorithm
for computing an alignment of trees by [JWZ95]. The time complexity is

O (|Tx| - |T2| - (deg(Ty) + deg(2))?)

Recall that Jianget al. showed that the alignment problem for two unordered trees is MAX SNP-
hard [JWZ95]. Furthermore, we obtain a more negative result for the alignment of trees becats®.Lu
showed that the less-constrained distance problem for unordered trees has no polynomial-time absolute
approximation algorithm [LSTO1], i.e. the solution is not within an additive constant of the optimum,
unless P= NP. Then we immediately have the following corollary.

Corollary 4.20 The alignment problem for two unordered trees has no polynomial-time absolute approxi-
mation algorithm, unless £ NP.

4.7. Semi-Accordant Mappings: Acct = Cst = SP” = SR 91

4.6.3 Property of Alignable Mappings

In order to verify that a given tree mappig is alignable, we do not need to verify that the requisite
condition for the alignable mapping holds for all the element8/ofin fact, it sufices to verify the same
condition only for thdeavesof M defined as follows.

Definition 4.21 (Leaves in Tree Mapping) For a tree mapping/, the set of leaves§ (M) is defined as

(M) ={(s,t) e M |V(x,y) € M[x < s = z=3s]}.

Proposition 4.22 Let M be a Tai mapping. Then, the following are equivalent.

1. M is alignable.
2. £(M) is alignable.

Proof. (1=2): Itis obvious.
(2=1): For (s1,t1), (s2, t2), (s3,t3) € M, we assume thay; - s, < s1-s3. Further, let §,t)), € £(M)
satisfys; < s; andt] < t, for eachi € {1, 2, 3}. We consider all the cases as follows.

(i) If s; ands; are not comparable with each other for any € {1,2,3} such that. # j, we have
s;—s; = s;— s} andt; - t; = t; -’ by Proposition 3.1. This immediately implies the assertion.
(ii) If s; < szandsy < sz hold, thent; - t3 = t, - t3 = t3 holds.
(iii) If s;3 < sp holds, thens; - s, = s1-s3 implies thats; is not an ancestor of;. Hence, we have
t1-12 =ty < ta-t3.

Therefore, we have the assertion. |

This proposition implies a close relation to the analysis of phylogenetic trees although it goes beyond
the scope of this thesis.

4.7 Semi-Accordant Mappings: A ccf = Cst = SP” = SR

We have already shown that the following three mappings are equivalent: strongly structure-preserving,
constrained, and structure-respecting mappings. Therefore, we unify these three classes of tree mappings,
and coin a new term standing for these classes instead of the conventional terms.

As shown in this section title, we refer to the class of these three mappirsgsrasaccordant map-
ping, and denote the class byc&. We employ the definition of constrained mapping as the primary
definition of semi-accordant mapping.

Definition 4.23 (Semi-Accordant Mapping) A Tai mappingM is semi-accordantf the following
condition holds:

V(s1,t1), (s2,12), (s3,13) € M [s3 < s1-52 <= t3 < l1-13].
In order to verify that a given tree mappidg is semi-accordant, we do not need to verify that the req-

uisite condition for the semi-accordant mapping holds for all the elemendts &s in case of the alignable
mapping, it sfices to verify the same condition only for tleavesof M defined in Definition 4.21.

Proposition 4.24 Let M be a Tai mapping. Then, the following are equivalent.

1. M is semi-accordant.
2. £(M) is semi-accordant.

Proof. (1=2): Itis obvious.

92 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

(2=1): For (s1,t1), (s2,t2), (s3,t3) € M, we assume that; - s, = s1-s3. Further, let §},¢), € £(M)
satisfys; < s, andt; < t; for eachi € {1,2,3}. Sinces; ands; are not comparable with each other for
anyi,j € {1,2,3} suchthat # j, we haves; - s; = s; - s’ andt; -t; = t; -t} by Proposition 3.1. This
immediately implies the assertion. 1

4.8 Accordant and Lu Mappings: A cc 2 Acc* = Lu

Here, we introduce an important class of tree mapping by restricting accordant mapping. This class plays
an important role in Part Il in this thesis.

Definition 4.25 (Accordant Mapping) For a Tai mappingy/, M is accordantif and only if the fol-
lowing condition is satisfied:

V(s1,t1), (52, t2), (s3,t3) € M[s1-s2 = s1-53 <= t1-ta =1l1-1t3].

Example 4.26 Figure 4.3 shows an example of accordant mappings. Figure 4.3(a) and (b) are accordant
while Figure 4.3(c) is semi-accordant but not accordant.

S T S T S T

ping

(b) Accordant map

Figure 4.3. Accordant mapping

The accordant mapping has the following equivalent form of definitions.

Proposition 4.27 For a Tai mapping/, the following four conditions are all equivalent.

1. Y(s1,t1), (52, t2), (53, t3) € M[s1-s2=51-83 <= t1-tp =11-13].
2. Y(s1,t1), (s2,t2), (83,13) € M[s1-82 < s1-83 <= t1-tp < t1-13]
3. V(s1,11), (52, 12), (53,13), (54, t4) € M[s1-52 = s3-84 <= t1-1p = t3—14]
4. V(s1,t1), (s2,12), (53, 3), (54, ta) € M[s1-52 < s3-54 = t1-12 < l3-14]

Proof. (1=2): If s;-s, < s1- 83, thens, - s3 = s1-s3. By condition (1), we have, -t3 = t; -3 and
thereforet; -ty < ty - t3. Sincesy — s, = 51— s3 follows t1 - t, = t1 - t3, we conclude -t < t1-t3.
(2=1): We claim thats; - sp # s1-s3 if t1 -t # t1 - t3. Sincety -t, andt; - t3 are comparable, we may
assume thaty - ¢, < t1 -t3. Hence, we have; - s, < s1 - s3 by condition (2).

(An2 = 3A4). By Proposition 3.1, we may assume- sz = s3-s4 and therefore, -tz = t3—1t4 by
condition (1).t; - t, = tz3—t4 follows s; - s2 = 81— s3 by condition (1), and; - t, < t3-14 doess; -t <
s1 - s3 by condition (2).

(3=1 and 4=-2): The conditions (1) and (2) are respectively obtained by letting s4 in the conditions
(3) and (4). |

If Eq.(2.7a) of the recurrences in Section 2.8.3 is rewritten as follows, the algorithm for computing an
optimal accordant mapping is immediately obtained.

Dr(vi(F1), v2(F2)) =

Dr(0, va(F2)) + jngigz{DT(Ul(Fl)a T) —Dr(0,T)}
Dr(vi(Fy), 0) + jnéigl{DT(Tv v2(F2)) — Dr(T,0)}
D(F1, F2) + d(v1, v2)

|D(F},) + d(vy,) + d(e, v5) |

4.8. Accordant and Lu Mappings: Acc 2 Acc™ = Lu 93

Without proof, we show some important properties of accordant mappings.

Proposition 4.28 For an accordant mapping, the following hold.

1. M is monotonic, symmetric, and transitive.
2. If d is metric, accordant distance is a metric.
3. If M is accordant)/ is semi-accordant, and not vice versa; i@ Acc.

4.8.1 Closure of Tree Mappings

). The accordant mapping is characterized by the existence ofdaharewith respect to the binary opera-
tion x - y. Hence, there exists a tree mappihf such that\M C M* and (53 - s, t1-t2) € M* for any
(s1,11), (s2,t2) € M* if and only if M* is accordant.

Definition 4.29 (Closure of Set of Nodes)or a given subsdf C V(T'), we can define thelosureU*
of U as the minimum set satisfying the following:

1. V(T Do2U*2DU.
2. Foranyz,y e U*, x -y € U*.

From this definition, the closuré* of U is defined as follows:

U=V U{z-y|z,yeU}.
We extend the notion of closure to tree mappings.

Definition 4.30 (Closure of Tree Mapping) For two treesS andT, let M be a tree mapping between
S andT. The closure of\/ is defined as the minimum tree mapping satisfying the following.

1. V(S) x V(T) D M* D M.
2. (s1-82,t1-t2) € M* holds for any §1,t1), (s2,t2) € M*.

If the closure)M * exists for a tree mappindy/, the following holds:

M* = MU {(s1-s2,t1-12) | (s1,t1), (52, 12) € M}.

We refer to the class of the closure @fmapping a<*. Note that every tree mapping does not
necessarily have its closure. In fact, a tree mapping has its closure if and only if it is accordant.

Example 4.31 In Figure 4.4, we show an accordant mapping (left), and its closure (right). It is easy to see
that the closure is also an accordant mappindrigure 4.5left), we show a Tai mapping. Figure 4.5(right)
shows that the resulting mapping calculated along the definition of closure in Definition 4.30. It is obvious
that this mapping is not a tree mapping. Then there is no closure for the Tai mapping in Figure 4.9(left).

Proposition 4.32 For a tree mappingd/, the following are equivalent.

1. M is accordant.
2. M* = M U{(s1-s2,t1-t2) | (s1,11), (s2,t2) € M} is a tree mapping.
3. M* is accordant

Proof. The equivalence between (1) and (2) is obvious by (3) and (4) in Proposition 4.27. The condition
(3) apparently implies (2).

(3=2): M*U{(s1-s2,t1-12) | (81, 82), (t1,t2) € M*} = M* holds. In particularM*U{(s1~ s2,t1-t2) |

(s1, $2), (t1,t2) € M*} is a tree mapping, and hendé* is accordant. |

We have immediately the following proposition from the definition of closure of tree mappings.

94 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

S T S T

Figure 4.5. A Tai mapping with no closure

Proposition 4.33 (Tree Mapping for Lu distance) A tree mapping in Lu distance is the closure of an
accordant mapping, i.e.

Acc D Acc™ = Lu.

If d is a metric, the following holds:

DA(Ty, 1) = DA (T3, T»).

4.9 Summary

We have addressed the problems raised in Chapter 2, and untied confusion in the definitions and relation-
ships of tree edit distance measures. The class hierarchy of tree mappings established this chapter is shown
in Figure 4.6. In Table 4.1, we summarize the properties in each class of tree mappings. For tree mapping
classes of Tai, alignable, semi-accordant, and accordant, each class is clearly discriminated by a simple tree
mapping depicted in Table 4.2.

95

4.9. Summary

2 2 2 (wsiHa¥OWO§) WisIydiowos| (wsmHa¥owos) wisiydiowos|

[230)-43) s [soren] (No1sngj uoISn|oU| paurensuo) ((NOISNIGH uoISN|oU| PaUrRASU0D

[e101-19) VA [s6N] (NorsnToN) uoisnjou| (NorsnToN) uoisnjou|

s a a [86len] (1@) dn-wonoq (1cg) dn-wonog

s o

s s s Hmmwwmw_uﬁ butore M_%._“w\w_m_ 00v) 1UBPI0IIY JO BINSO|D

A A A A sisayl siyL (09v) JUepI02dY
[£6914] (YS) bunoadsay-ainonis

s s a a [o6eUZ ‘S6RUZ] (1) paurensuon (%) 1UepI02dY-IWSS
[yguel] d6) Buiniesaid-ainmonas Ajbuons

N 2 [8g11] (dS) Buinlesaid-aimonns (dS) Buiniesaid-aimonns

r sy e

s , » » [621e1] (v1) rey (v1) rey

Aowoouoy AdmswwAs Auanisueld] AloLiB ERVEIETEN (ansse|o wspeainbg sse|D

sasse|o Buiddew aan Jo sauadoid T v a|qel

96

Chapter 4. Relationship Analysis among Tree Edit Distance Measures

TAI
Asymmetric ‘
’7 ALN=CsT#
— SP
‘ 24
c
INCLUSION Acc#=Cst=SPbh=SR g
@
P
Acc 3
E‘.
— Acc*=Lu 2
INCLUSIONb ——
Top Bot
ISOMORPHISM

Figure 4.6. Class hierarchy of tree mappings

4.9. Summary

97

Table 4.2.Characteristic of tree mapping classes

S S
S 1 1
T S1 S92 S3 S1 52 S3 S1 52 S3 S9 S3 So S3
Tai Tai Tai
Alignable Alignable
Semi-Acc.
f ot by Accordant
Tai Tai Tai
Alignable Alignable Alignable
Semi-Acc.
fon Accordant
Tai Tai Tai
Alignable Alignable
Semi-Acc.
S Accordant
ty Tai Tai
Alignable Alignable
Semi-Acc. Semi-Acc.
Accordant
to t3
t Tai Tai
Alignable Alignable
Semi-Acc. Semi-Acc.
Accordant
to t3

Semi-Acc. stands for Semi-Accordant,

M = {(Sla tl)v (523 t2)7 (S3a t3)}

Part Il

Learning in Trees

“I like to climb trees. | can see everything.”

— Orson Scott CardSpeaker for the Dead

Chapter 5

Kernel-based Learning for
Trees

Data encountered in the real world are often not represented as vectors of numbers, but as structured data.
Analysis ofstructured datasuch as sequences, trees, and graphs is attracting considerable attention. Haus-
sler [Hau99] introduced theonvolution kernela general framework for designing kernel functions for
discrete data structures including structured data. The basic idea of convolution kernel is to decompose a
data object into its parts, and to define a kernel function in terms of the parts. Many convolution kernels
specialized for various discrete data structures have been proposed.

In this chapter, we focus on the kernel method fasted ordered labeled treesA rooted ordered
labeled tree is a fairly general data structure that models a wide variety of structured data including parse
trees of natural language texts, semi-structured data such as FKXNILL, and biological data such as RNA
secondary structures and glycans. We focus on glycans in the next chapter. Throughout this chapter, we
refer to rooted ordered labeled trees simplyrassunless otherwise stated.

5.1 Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised learning algorithms first introduced by Vapnik
[Vap95]. SVMs have shown an outstanding generalization performance in a variety of practical problems
and have a strong theoretical basis in statistical learning theory.

SVMs is primarily a two-class discriminative classifier. For a given set of training data, each of which
is labeled with positive and negative, SVMs learn a linear decision boundary to discriminate between the
positive and negative classes of the predetermined training data. To determine whether an arbitrary datum is
positive or negative, which is not necessarily a training datum, the decision boundary has only to be applied
to each element of data.

To be more precise, the two-class classification is defined as followsX LetR™ denote the input
space and” denote the output spade-1, +1}, where the values-1 and+1 indicate the labels of negative
and positive respectively.

A training datumis a pair inX x Y and a training set is a finite set of training data, denoted by

D = {(:13‘1, yl), ey (:I)m, ym)} g X xY.

Thez; is referred to as an example, and theas aclass label The purpose of the learning procedure in
SVMs is to find a hypothesis functiofi: X — R\ {0}, which is characterized by a pair of parameters,
weight vectorw € R™ andthresholdb € R. In fact, the hypothesis function is represented by the following
linear function:

f@)=w-x+b

A datume is classified as positive or negativefifx) < 0 or f(x) > O respectively. In other words, the
learning procedure outputsdacision functionf; : X — Y, i.e.

fa(®) = sgnw - x +b),
so thaty; = f4(x;) approximates the probabilistic relation between inputs and outputs.

101

102 Chapter 5. Kernel-based Learning for Trees

5.2 Kernel Methods

The kernel methoda method of machine learning, provides a diversity of applications with a generic and
flexible framework to solve various problems including the classification problem, and is being extensively
studied (cf. [STCO4]). The advantages of the kernel method, also known &srtie trick have resulted
from the usage dfernel functionsnstead of usage of explicit and fixed vector representations of data.

We take the classification problem for instance to clarify the feature of the kernel method. The
classification problem is a problem to find a decision function

fa: X = {-11}

so thatf;(x;) = y; holds for a given set of training dafdz1,v1), ..., (xn,yn)} C X x {1,—-1} for a
proper subsefz,...,xx} of a data space’, i.e. {z1,...,zny} C X). As seen in the previous section,
SVMs solve the classification problem, if the set of training ddta, y;)} is linearly separablei.e. under
a given vector representation of an object spachby ¢ : X — R", there existw € R™ andb € R such
that:

Vi [yi = sgnw - ¢(z;) + b)]. (5.1)

Eventually, giveny and the training data, SVMs fingd andb that make Eq.(5.1) hold. Whef)(x) denotes
thei-th component ofy(z), i.e. ¢(x) = (¢1(z), - . ., dn(x)), €ache;(z) is called afeatureof x, andR" is a
feature space

A problem in practicing SVMs is that it is an elaborate and time-consuming jalistmveran ap-
propriate¢ : X — R”™ so that the image of the positive training data ({é(z;) | yv; = 1}) and that of the
negative ones (i.e(¢(x;) | y; = —1}) are split by a hyperplane.

Apart from the classification problem and SVMs, the same applies to many conventional methods of
machine learning. In fact, they solve problems provided with a feature space and a vector representation
that fulfill certaingood conditions. In other words, to take advantage of conventional learning machines,
it is required to determine good vector representation to a feature space, which is an elaborate and
time-consuming job, too.

In contrast, the kernel method does not require a vector representation does a kernel instead,
which is a symmetric and positive semidefin@ring K : X x X — R.

Symmetric: K(zx,y) = K(y, z);
Positive Semidefinite: an arbitraryGram matrix

K(l‘l, J,‘]_) R K(JI1, xn)
[(K(zi, 2)]ij=1,...n = : :
K(z,,z1) ... K(z,,z,)

has only non-negative eigenvalues.

In learning machines such as SVMs, we need to provide an appropriate vector represergatn
that the provided kernéK is identical to the natural inner product in the associated feature space, that is,
K(z,y) = {(¢(x), ¢(y)) holds. The kernel method encapsulates vector representations of data and feature
spaces, and does not necessarily regexicit vector representations. We have only to desiginalarity
functionK(z, y) between two objects andy, and verify the positive semidefiniteness of the function.

5.3 Haussler's Convolution Kernels

Haussler [Hau99] proposembnvolution kernelsa general framework for handling discrete data structures
by kernel methods. The basic idea of the Haussler’s convolution kernel method is

1. decomposing objects into thesubpartsand then,

2. calculating the convolution kernel using a known underlying kernel defined for the subparts (a subpart
kernel).

Let X andX’ denote nonempty data spaces. The following theorem gives the special form of the Haussler’s
R-convolution kernel [Hau99, Theorem 1] for the casdbf 1.

5.3. Haussler’'s Convolution Kernels 103

Theorem 5.1 (Convolution Kernel with D = 1 [Hau99]) LetK' : X’ x X’ — R be a kernel. Given
a binary relationR c X’ x X, the functionK : X x X — R defined by the following is also a kernel.

Ky= Y Y K@)

(z’,z)ER (v',y)ER

Intuitively, let S(z) be the set including all parts of the structureuch thatS : X — 2%, the convolution

kernel is defined as follows:
K@y = Y, > K@)
z'eS(z) y'€S(y)

Haussler's theorem [Hau99, Theorem 1], which defines the general form @t-ttwvolution kernel, is
obtained as a corollary to Theorem 5.1.

Corollary 5.2 (Haussler [Hau99]) Let K/, : X x X; — R be kernels fod = 1,...,D. Given a
relationR C X] x --- x X, x X, the functionK : X x X — R defined in Eq.(5.2) is also a kernel.

D
K@y= Y DR § R CARTA) (5.2)

(x1,--2p,@)ER (Y1, ¥ Y)ER d=1

Proof. Define a functiorK’ : (X] x --- x X)) x (X] x --- x X;) — R as follows.

D
K'((#h, -, 2D), W, - vp)) = [[Kl) (5.3)
d=1

SinceK’ is the tensor product &, . . ., K, and the set of kernels is closed under the operation of tensor
product K’ is a kernel overt” = X x - - - x XJ,. Therefore, applying Theorem 5.1kadefined in Eq.(5.3),
we obtain the fact thdK defined by Eq.(5.2) is a kernel. |

The set of kernels is closed under direct sum, as well. Therefore, we obtali theftned in Eq.(5.4)
is a kernel as a corollary to Theorem 5.1.

D
K@zy= > > D K@yl (5.4)

(@], zp)w)eR ((yg,--yp)YER d=1

The implication of the above discussion is that the variety of the operations that preserve the property
of being kernels is an important factor to determine the range of application of the Haussler’s convolution
kernel. In this regards, Lemma 5.3 and Corollary 5.4 adds an example of the Haussler’s convolution kernel,
but the meaning is more than it. In fact, Corollary 5.4 showed a way to weight the underlying kernels
K'(2',y) when they are accumulated into a convolution kernel.

Haussler’s theorem is available even if the underlying kerb&lg’, y’) are weighted according to
the structures’ andy’.

Lemmab.3 LetK’' : X' x X’ — R be a kernel. For any functioh: X’ — R, the functionK” defined
by the following is a kernel.

K'(z,y) = f(z) - f(y) - K'(z,y) (5.5)

Proof. Apparently, F'(x,y) = f(z) - f(y) is a kernel. Since the property of being kernels is closed under
tensor product and restriction of domaik§ is also a kernel. |

Corollary 5.4 For a given functior§ : X — 2%’ letw, be a set of functions indexed byc X such
that
wy : S(x) — R.

104 Chapter 5. Kernel-based Learning for Trees

Then, the functiorK defined by the following is a kernel.

K= > 3 w@)) K@.y)

z'€S(z) y'€S(Y)

Proof. By letting X* denoteX”’ x X, we extend our definitions as followss* : X* — R, K* : X*xX* —
R andS* : X — 2" such that

! a) = w(z,z’) if 2’ € S(x)
Y0 if o/ ¢ S(x),

K" (', 2), (¥, y) = K'(«',¢/),
S*(z) = {(z',z) | ' € S(x)}.

Since the following Equation holds, the assertion immediately follows from Lemma 5.3 and Theorem 5.1.

K(I, y) = Z Z ’LU*(I/7 $) : w*(ylv y) : K*(($/7 1’), (y/a y))

(z',z)eS*(x) (v',y)€S*(y)

To normalize the size factor of instances, the followmgmalized kerneiks often used:

K(z,y)
VK@, 2) vK(y,y)

K(z,y) =

5.3.1 Gap-Weighted String Kernel

The string kernels that Lodhi [LSST2] introduced is an important example of Haussler’s convolution ker-
nels. Lodhi took advantage of Corollary 5.4 and introduced string kernels. To evaluate similarity between
two strings, this kernel [LSST2] uses the number of the substrings commonly occurring between two
strings.

First, let us consider the counting function defined as follows.

K@y)=) Y i) (5.6)

s€S(z) teS(y)

The functionK(z, y) defined by Eq.(5.6) returns the number of common substringsasfdy, and is as-
serted to be a kernel by Theorem 5.1. In Eq.(5%);) means that the multiset (or bag) of all subsequences
in z, ando(s, t) is the Kronecker’s delta, defined by

)1 (s=1)
“&ﬂ‘{o (s % 1).

The kernelK in Eq.(5.6), however, involves some drawback due to the property that all the substrings
are counted with the same weight. For example, for
x = conversion and y = convolution,
the matching of the first occurrences ebh,” that is, the matching between
conversion and convolution,

is important, since it indicates that they are both contiguous with the same prefixX ‘In contrast, the
matching between

conversion and convolution

5.4. Tree Kernels 105

is just a coincidence, and should have a much less important impact on the similarity betaredn
To mitigate the drawback, Lodhi [LSST2] introduces a weighted counting method as defined by
Eq.(5.7), which is a kernel by Corollary 5.4.

K(z,y)= Y, > A 2909 5(s,1) (5.7)

seS(z) teS(y)

In Eq.(5.7),9(s, x) is defined as the length of the subsequeneédth gaps inz. The constand is called a
decayfactor, and is taken from the interval, (0. Fors = con andxz = conversion, we have the following
weight for each matching:

® ¢(s,x) =3 for matchingconversion, since the sequencedn” spans 3 character-long in
® ¢(s,x) = 10 for matchingconvolution, since the sequencedn” spans 10 character-long in

5.3.2 Spectrum Kernel for Strings

Leslieet al. introduced a simple andfecient string kernel, thepectrum kernelLENO2], for classifying
proteins. The spectrum kernel is based on the simple idea that the more substrings with a fixed length are
shared in two strings, the more similar they are. Hence, the notion of the spectrum of a string is often used
in approximate string matching [JU91, Ukk93].

Let X be afinite alphabet. BY*, we denote the set of all strings o&rby X7 all strings with length
q overX. A g-gramis any string with lengtly in 9.

Recall that #[w] is defined as the total number of occurrences oh = (See Section 2.2.7), i.e.

#He[w] = {y |z =ywz A y,z€Z}H.

Theg-gram profileof a stringz is the vectoiG,(z) = (#x[w]) wexq, iINdexed by all-gramsw and arranged
in lexicographic order of-grams. It is a feature mapping from an input spac¢eto R*I°. Then, the
g-spectrum kernedf two stringss; ands; is defined as follows.

S #salu] - #solu]
wexd

<Gq (51)a Gq (52» .

Example 5.5 Let ¥ = {a,b}, and consider the 2-spectrum kernel of the striags= abaaabaa and
s = aababbab. The 2-gram profiles of; ands; are given as follows.

Kq(517 82)

w ‘ aa ab ba bb
#silw] | 3 2 2 0
#solw] | 13 2 1

HenceKa(s1, s2) = ((3,2,2,0),(1,3,2,1)) = 13. [

Theg-spectrum kernéK ,(s1, s2) can be evaluated in time @{(|s1| + |s2])). Moreover, the spectrum
kernel allows SVMs to classify a new string in linear time.

5.4 Tree Kernels

Also, for more complex discrete structures than strings, a variety of convolution kernels are proposed. In
this section, we focus on the kernels for trees.

The intuitive idea of tree kernels in common is as follows. For two teesdr, let #I'[r] denote
the total number of occurrencesofn T'. The vector representation 6fis denoted by

A(T) = #T), #T'[ma), #T'[7], - .),

wherer; (i > 1) are subtree patternsin Then the kernel is given by the inner product of two vectors for
two treesTy; andT5:

K(T1, T) = (¢(T0), 6(T)) = > _#Ta[m] - #T2[7.].

The choice criteria of subtree patterndead to a variety of tree kernels.
Note that we omit the weight factor in kernels for simplicity.

106 Chapter 5. Kernel-based Learning for Trees

5.4.1 Parse Tree Kernel

Collins and Dty [CDO01] presented thgarse tree kerneds a counting function of common subtrees, which
is in the class of convolution kernels [Hau99].

Since a common subtree between two ordered tféemnd 7, uniquely defines a partial mapping
betweenV (T1) andV (13), the parse tree kernel is regarded as a counting function of partial node-to-node
mappings between trees. Then the kernel function is basically defined as follows. (Note that the definition
is slightly modified from the original so that it can be applied not only to parse trees but also to general
rooted labeled ordered trees.)

KT,T)= Y, Y K¥v,w),

v1EV(Th) v2€V (12)

whereKS%(vy, v,) is the counting function of the number of the partial mappifigsat satisfy the following
conditions.

e fis amapping from a set of nod&8 C V(131) to V(1) with I(f(v1)) = I(v2).
e Anyv e V' \ {v1} satisfies the following conditions:

1. v < v1 (v is a descendent af;),

2. par@) € V/,

3. [ch(par())| = [ch(f(par)))!,
4. If v is thei-th child of parg), then f(v) is also thei-th child of f(par@)).

A partial mapping satisfying the above conditions is referred tosag#ree-congruennapping. The value
of KS%(v1, v5) can be calculated by the following recurrences.

[ch@y)]
KSC(Ul(Fl), 'UZ(FZ)) — (5([(1}1), l(Uz)) . 11:]1: (1 + KSC(T{7 TZl)) if ICh(Ul)l = |Ch(’l}2)|,
0 otherwise

where we assume, for = |ch(vy)],

Fi=Tle. . eT},
Fo=T) e --eTJ.

The value of the kerndK (77, T») can be calculated by dynamic programming if®(- |7%|) time. Note
that the subtree-congruent mapping is injective and preserves the hierarchical and the sibling orders between
two trees.

5.4.2 Labeled Tree Kernel

The parse tree kernel is too restrictive since it considers only subtrees with the same number of children.

Kashima and Koyanagi [KK02] proposed an extended tree kernel by generalizing parse tree kernel [CDO1].
Let Ty, T andr be trees. By #;[7] we denote the total number of the occurrences of subtiad’;.

Then, the labeled ordered tree kernel [KKO2]Igfand T is defined as follows:

K(T1,To) = Y #Tu[r] - #T3[7],
TET

where.7 denotes the universal set of trees. The kernel function is rewritten as

K(T,To)= >, Y #M(Ti(v1), Ta(va)),

1€V (Th) v2€V (T3)

where #/17°(Ty(v1), T»(v2)) is the number of common subtrees rooted at hatlandv,. Specifically,
#MToP(Ty(v1), To(v2)) is the counting function of the number of ttap-down mappingd/ betweerl (v1)
andTy(v,). We have the following recurrences fdfieiently computing #/ 7" (T (v1), To(v2)) by dynamic
programming. In the recurrences, 6t (T3 (v1), T>(v2)) be #M T (T (v1), To(v2)).

5.4. Tree Kernels 107

KT, T)= Y. Y. Kr(Ti(vr), Ta(v2)), (5.82)

1€V (Th) v2€V (12)
K7 (v1(F1), v2(F2)) =6(I(v1), l(v2)) - (1 + K (F1, F2)), (5.8b)
KF(®7 F2) :KF(F17 Q) = 07 (58C)

Krp(Tye F1, T, 0 F5) =Kp(F1,Ts ¢) + Kp(Th e 1, o) — Kp(Fy, F) (5.8d)
+ Kr(T1,12) - (L+ Kr(F1, F2)).

We show the algorithm for computing the recurrences in Algorithm 5.1. This algorithm rungi Q7% |)
time and space.

Example 5.6 Consider two tree%; andTs in Figure 5.1 Table 5.1shows the feature vectors 6f and7>
for the labeled tree kernel. In this example, we depict labels of nodes as white circles and black pentagons.
We have the following kernel value.

K(TL TZ) = <(3a 17 27 17 07 1a 17 17 17 0)7 (37 1a 2a la 17 27 Oa O? 0) 1)> =16.
T, T
Figure 5.1. Two ordered trees for the labeled tree kernels
Table 5.1.Feature vectors in the labeled tree kernel

K/l\

0 1

(el

Labeled Tree Kernels for Unordered Trees

Kashimaet al. proved that the problem of computing the labeled tree kernel for unordered trees is #P-
complete [KSKO06a]. This dliculty can be expected since the problem of counting bipartite matchings is
known to be #P-complete [Val79], and tree matching problems for unordered trees inherently include the
computation of bipartite matching.

5.4.3 Labeled Tree Kernel with Elastic Structure Matching

Kashima and Koyanagi [KK02] extended their tree kernel by allowing elastic structure matching for a more
flexible interpretation of the common patterns, which is referred to adamtic tree kernel
Now consider two tree$; andT> in Figure 5.2 As in the previous example, we depict labels as

white circles and black pentagons. The elastic tree kernel was designed so that the (;;}ﬁpt'realso

counted as a common structure betwé&gmandT>.
Theelastic tree kernelks given by the following recurrences.

108 Chapter 5. Kernel-based Learning for Trees

T T>

AN

Figure 5.2. Two ordered trees for the elastic tree kernels

Algorithm 5.1 Labeled tree kernels

e TT[i]: thei-th node inT indexed by postorder numberingd [1, |T'[]).
e F[i]: thei-thtree inF (i € [1, |F|]).
e ch(v): forestF' obtained by removing from v(F).

procedure TrRee_KerNeL(T7, T7)
def array Kr[1..|T1], 1..|T%|]
def array K[1..|T1| + 1,1..|T3| + 1] initialized with O
for i < 1to |T1|
for j — 1to |73
if I(Ta[4]) # (T2[j]) then Kr[i, j] <O
elseK [, j] < 1+ Forest_KernNeL(Ch(11[]), ch(Z%[4]))
Kli+1,j+1] «— Kr[i, 5] + K[i,j + 1] + K[i + 1, j] — K[, j]
return K[|71| + 1, |T2| + 1]
end

procedure Forest_KERNEL(F1, Fy)

def array Kp[1..|F1| + 1, 1..|F5] + 1] initialized with O

for i < 1to |F}]

for i « 1to ||
Krli+1,j+1] — Kg[i +1,j] + Kg[i,j + 1]
— Kpli, jl + Ko[Fi[i], F2[5]] * (1 + Kg[i, j])

return Kgp[|F1| + 1, |F>| + 1]
end
The algorithm for the elastic tree kernel is obtained only by replaBiagwith K.

K({TL,T)= Y Y. Kr(Ta(vr), Ta(v2), (5.9a)

v1EV(T1) v2€V (T3)
K1 (v1(F1), v2(F2)) =6(I(v1), [(v2)) - (1 + Kr(F1, F2)) (5.9b)
Kr(0,) =Kp(F1,0)=0 (5.9¢)

Kp(Tye F1, Ty 0 F5) =Kp(Fi,T5 [5) + Kp(Th e Fi, I5) — Kp(Fy, Fy) (5.9d)
+ K(11,T2) - 1+ Kp(F1, F2)).

These recurrences are the same as the recurrences (5.8) except for one letter in Eq.(5.9d). Algo-
rithm 5.1 can be also applied to the computation of the elastic tree kernel with a subtle modification.
In spite of its flexibility, the elastic tree kernel has a certain unintended property. We here discuss the

property.

The elastic tree kernel is the counting function of accordant mappingAlthough the elastic tree kernel

was proposed with the intention of allowing structural ambiguities as much as possible, it waini@reu

Itis easy to prove that the elastic tree kernel [KK02] counts the number of the accordant mappings between
two trees. This fact indicates the possibility that more flexible tree kernels can be designed, since we have
already seen that there exist more flexible classes of tree mappings. In the next chapter, we construct more
flexible tree kernels from the point of view of tree mappings.

5.4. Tree Kernels 109

The elastic tree kernel is not a convolution kernel.The tree kernel based on convolution is defined as
follows:

KL, = Y, Y. K(m,m)
T1E€S(T1) m2€S(T2)
= > K'(71,72),
(T1,72) ES(T1) X S(12)

whereS(T") denotes a set of subtree patterng’inThe elastic tree kernel is, however, defined as follows:

K(I1,T%) = > K'(r1,72),
(T1,T2) EMACCS(T1) X S(T2)

where by MA< we denote a pair of common subtree patterns betwWigesnd 7> mapped by accordant
mappings (See Example 5.7). Since this definition is beyond the convolution kernels, it has yet to be
shown that the counting function really satisfies the required properties of a kernel function, i.e. positive
semidefiniteness. We prove it in the next chapter.

We address these problems in the next chapter.

Example 5.7 Figure 5.3 shows tree mappings counted in the elastic tree kernel. In this example, we focus
on a subtree pattern consisting of three nodes. Itfficdit to recognize what is the feature space in this
kernel. The subtree patterpfa\. is counted in some cases, and not counted in other cases as shown in
Figure 5.3. 1

counted mappings | uncountted mappings

Figure 5.3. What is the feature space in the elastic tree kernel?

5.4.4 String Kernel for Trees

Although tree kernels due to Kashima and Koyanagi [KK02] successfully reduced the computation time by
using dynamic programming technique, quadratic computation time is still fistient for handling large
amounts of data, since the value of this kernel has to be evaluated for most pairs of trees in the training data
and test data. Therefore, for moriigent computation, it is important to design a mofgogent kernel
that is computable in linear time, but withfEgient expressive power.

To tackle this problem, Vishwanathan and Smola proposed a linear-time tree kernel [VS02]. Their
idea was to convert trees to strings with brackets generated by preorder traversal, and to count the number
of the common substrings among thefficgently by using sffix trees.

110 Chapter 5. Kernel-based Learning for Trees

This tree kernel does not seem to have enough expressive powgerferal-purpose Since this
kernel considers only for complete subtrees, which can be represented as a substring of the sequence rep-
resentations, it cannot incorporate internal structure of trees. More specifically, this kernel considers only
the subtrees including all their descendant nodes down to the leaves. Therefore, if disjoint labels are as-
signed to leaves between two trees, the kernel value (i.e., the similarity) ends up with 0, even if these trees
are isomorphic except for the labels assigned to leaves. This seems that this kernel does not have enough
expressive power, and is a restricted similarity measure between two trees for general purpose.

Example 5.8 Consider two trees ifigure 5.4. Filled nodes indicate leave$able 5.2shows the feature
vectors ofT; andT; for Vishwanathan-Smola’s kernel. We have the the following kernel value.

K(Tla TZ) = <(Ba 2; 17 17 07 1)3 (23 23 17 07 17 0)> =11

b

Figure 5.4. Two ordered trees for Vishwanathan-Smola’s tree kernel

Table 5.2.Feature vectors in Vishwanathan-Smola’s tree kernel

T,
T,

N W e
NN (Te
Pk
Ll
(e}

Example 5.9 For the following two tree§; and7» as shown irFigure 5.5, the liner-time tree kernel gives
the valueK(T1,72) = 0. In spite of only the one node mismatch at the leaf node between two trees, this

kernel regards these two trees as completdlgint. 1
T, T,
ao a
a a
a a
a a
ao b

Figure 5.5. Expressive power of the string kernel for trees due to Vishwanathan and Smola

5.5. Summary 111

5.5 Summary

In this chapter, we reviewed the convolution kernel as a design framework for learning discrete structures.
Also we introduced some tree kernels in prior work, and discussed their properties and raised a few problems
to be addressed.

® The elastic tree kernel [KK02] enables to us to deal with ambiguities in trees by extending a convolu-
tion kernel for trees. As a result, the elastic tree kernel has turned out to be not a convolution kernel.
This means that it is required to prove its positive semidefiniteness.

® The elastic tree kernel has not enough expressive power as originally intended by Kashima and Koy-
anagi. It is possible to develop a more flexible tree kernel.

® The string kernel for trees due to Vishwanathan and Smola [VS02] is one of the flicigine tree
kernels in prior work. But, the expressive power is a restrictive.

In the next chapter, we design novel tree kernels based on the notion of tree mappings, and address the
problems raised in this chapter. Chapter 7 is devoted to develop a tree kernel as fast as the string kernel for
trees due to Vishwanathan and Smola.

Chapter 6

Mapping Kernels for Trees

In this chapter, we characterize tree kernels based on the class hierarchy of tree mappings established in
Chapter 4. We first propose the algorithms for computing counting functions of Tai mappings, alignable
mappings, and semi-accordant mappings. We then show that the counting functions of Tai mappings and
semi-accordant mappings are actually tree kernels and that these two tree kernels have more flexible expres-
sive power than the elastic tree kernel proposed by Kashima and Koyanagi [KKO02]. In contrast, we show
that the counting function of alignable mappings is not a tree kernel.

6.1 Recursive Expressions of Counting Functions

In this section, we extend the notion of tree mappingfotests and provide counting functions for the
extended tree mappings between two forests.

Remark 6.1 The counting functions in the label tree kernel and the elastic tree kernel both count subtree
patterns between two trees, i.e. these require a pair of nedgs)(in the mapping) such thats, > s

andt, > t for any (s,t) € M. On the other hand, the counting functions proposed in this chapter count
common forest patterns between two trees as well as subtree patterns for generality. It is easy to modify
our counting functions in this thesis to count only common subtree patterns by just adding the recurrence
Eq.(5.8a).

6.1.1 Mapping-based Similarity between Forests
Recall that the algorithm for Tai distance is in fact defined over two forests as well as two trees. Then we

first extend the notion of tree mappings to forests as follows.

Definition 6.1 (Tree Mapping between Forests)Let F; and F; be two forests. A non-empty mapping
M C V(Fy) x V(F>) is said to be aree mappingf and only if M is a tree mapping frona;(F7) to
v(F3) for two nodesvy, v ¢ V(F1) U V(F?).

Let M€ (F1, F») denote the set of all possibdemappings betweeR; and I, i.e.
ME(Fy, F2) = {M | M is a tree mapping of clagsfrom Fy to F}.
The counting function¥ ¢ (F, F») are defined as follows. First, let us denote a symmetric function by
g :TxXI—RE,

whereR{ denotes the set of all non-negative real numbers. This funetidefines the similarity between
labels of nodes Next, we define the similarity between two trees based on a tree miapping

oM)= [o) lx2)). (6.1)

(wl,xz)EM

113

114 Chapter 6. Mapping Kernels for Trees

Then the similarity between two forests and F5 is defined by

K(FL,F)=), o(M). (6.2)
MEMC(Fy,F»)

6.1.2 Counting Function for Tai Mappings

The recursive expression of tle™ (771, 7>) is given as follows.

K™, 0)=K™®,F)=0
K™(vy(F)) o Fy vo(F5) @ Fy') =
o(l(v1), l(v2)) (1 + K™(FY,)1+ K™(FY, F}))
+ K™ (vy(F)) o Fy', F} @ Fy)
+ K™(F] o Y, vy(Fp) ® Fy')
—K™(F] o F}', Fy o F})) (6.3)

The following natural properties of Tai mapping (Property 6.2 and Lemma 6.3) play a central role in proving
the correctness of Eq.(6.3). We omit the proofs since they are immediately obtained from the definition of
Tai mapping (Definition 2.46).

Proposition 6.2 Let M be a Tai mapping from a fore$t to a forestry, i.e. M C V(F1) x V(F3), and
F/ be any subforest of; for i € {1,2}. ForM' = M n(V(F]) x V(F3)) andM" = M N (V(F]) x
V(F}')), the following hold.
1. If M is a Tai mapping fronF} to F5, thenM’ is also a Tai mapping from; to F}.
2. For non-emptyM C V(F)) x V(F}), the following two properties are equivalent.
(a) M is a Tai mapping fron¥y to F.
(b) M is a Tai mapping fron¥} to F5.

Lemma 6.3 Let F/ and F!” be two distinct forests. For a non-empty $¢t C (V(F]) U V(FY)) x
(V(F}) UV (FY)), the following two conditions are equivalent.

1. M U {(v1,v2)} is a Tai mapping fromv,(Fy) e F’ to vy(F}) @ F5 .
2. M satisfies the following three conditions.

(@) M =M UM".

(b) M’ is a Tai mapping fronF] to F}.

(c) M" is a Tai mapping fronf}’ to F}'.

Theorem 6.4 Eq.(6.3) is a counting function for Tai mappings between two tigemnd7>.

Proof. The left-hand side of Eq.(6.3) is decomposed into the following two disjoint componenks for
vi(Fy) @ F{' andF, = vy(F}) @ Fy.

KM,)= Y oM+ > o),
MeMv1,v2) MeM®1:v2)
where
M@ = (M € M™(Fy, F) | (v1,v2) € M}, and
M) = (M € M™(Fy, F) | (v1,v2) ¢ M}

The setM 1% C M includes all the Tai mappings withi{, v,) whereas the set11v2 C M is the
complementary o (*1:v2) in M, i.e. M©1:v2 = M\ MPLv2),

6.1. Recursive Expressions of Counting Functions 115

Assume {1, v2) € M. The tree mappind/\ {(v1, v2)} is identical toM'UM" for some Tai mappings
M’ from F] to F; and M" from F}’ to F by Lemma 6.3. On the other hand, for any Tai mappifgs
from Fy to F}, andM” from Fy’ to Fy/, the setM’ UM"” U{(v1,v2)} is also a Tai mapping fror (F;) e F;’
to v2(F3) e F} by Lemma 6.3.
Hence sincer (M) = o((v1), [(v2)) - (M) - o(M""), the following holds.
> o(M) = o(i(va), [(v2)) - (1 + K™(FY, Fp))(1+ K™(FY', F3)
MeM@1,v2)

As for M©1v2 we decompose it further into the following three components.
/\Z(UI,UZ) = M(*ﬂfz) U M(Ul,*) U M(*,* ,
where
MED = (M e M™(F1, F) | (v1,w) € M Aw # v},
MO = (M e M™(Fy, F) | (w,v2) € M Aw # v1}, and
M) = {M e M™(Fy,) | (w1, w2) € M = w1 # v1 A wy # vz}

Note that the setM () does not include any Tai mapping such thais paired with a node i since
v, is paired with a node other than. Intuitively, the notationM “:—) means that the nodg is not paired
with any node inF5 in the concerned set of Tai mappings. By condition 2 of Proposition 6.2, the following
holds.

S o) = K™ e Y, Fye F) — K™(F o FY/, Fj o),

MeM=v2)

> o(M)= K™(F] e F,vy(F3) e F) — K™(F] ¢ F}', F} ¢ Fy), and
MeM®1:-)

> o(M)= K™(F{eF{,FjeFy).
MeM=-)

The correctness of Eq.(6.3) is shown by adding together all of the above components, i.e.

Yo oon= Y o+ D> o)+ Y o(M).

MeM@i v MeM—v2) MeMwi-) MeEM(=.-)

6.1.3 Template of Counting Function for Subclasses of Tai Mappings

As Proposition 6.2 and Lemma 6.3 do not hold for the subclasses of Tai mapping, the simple Eq.(6.3) is not
applicable to the other three classes, i.e. the accordant, semi-accordant or alignable mapping. However, a
common template of counting functions exists that is applicable to all three of the subclasses.

C € {AccOorRDANT, SEMI-ACCORDANT, ALIGNABLE }
K€, F) = K¢(F,0) = KE(T,0) =0 (6.6a)
KC(Ty e Fy, T 0 Fy) = K (T @ F1, Ts o) + KC(Fy, Fy) (6.6b)
Kf (v(F1), Tr o F») = K{ (v(F1), T2) — Kf (T2, F1) + Kf (v(Fy), F)
—KC(Fy,) + KC(FL, Ts 0 F») (6.6¢)
K¢ (v1(F1), va(F2)) = o(i(v1), (v2)) - (1 + KS (Fy, F2)) + Kf (v1(F1), F)
+ KE (0a(F), F1) — KC(Fy, F) (6.6d)

K§ (F1, F») andKS (T3, T>) in the template are defined as follows.

K{(T1e F1,The Fy) = Y o(M),
MeM;

KS(FLF)= Y o(M),
MeM;

116 Chapter 6. Mapping Kernels for Trees

where
My={M e M (T1e F1, T F) |
MNWV() xV(I2e FR) 0V MN(V(Tye Fy) x V(T2) # 0}, and
Mz = {M € M (v1(F1), va(F2)) | M U{(v1,v2)} € ME(0a(F), va(F2))}-
The recursive expressions B (F1, F») andKS (Fy, F) are given afterwardK¢ (71, T») takes two trees

as the arguments, ardf (7', F) takes a tree and a forest. Eq.(6.6b) to Eq.(6.6d) are verified in the similar
way to Eq.(6.3), and the following Proposition 6.5 is used instead of Proposition 6.2 and Lemma 6.3.

Proposition 6.5 Let C be one of Acorbant, Semi-Accorpant, OF ALiGNaBLE. Further, letF; be a
subforest ofF; satisfying one of the following.

o Fz = Fl/

* Iy =vi(F)).

e F, =G, e F] e H; for some subforest§,;, H; of F;.
Then the following two properties hold.

1. For aC-mapping)M from Fy to Fy, M’ = M N (V(F]) x V(F3)) is aC-mapping fromF] to F3.
2. For arbitraryM C V(F]) x V(F}), the following two properties are equivalent.

(a) M is aC-mapping fromF; to F; and

(b) M is aC-mapping fromF; to F>.

In the rest of this section, we use the following notationsKpe= 0?;'1 Tij (e {1,2})andM €
ME(Fy, F).
® Mli,«x] = M N (V(T}) x V(F)) for eachi € {1,n4}.
o M[x,j] = M N (V(Fy) x V(T})) for eachj € {1,7,}.
o MI[i,j] = M N (V(T}) x V(T})) = M[i,] N M[x, j] for eachi € {1,n1} and eacly € {1, ny}.
In what follows, we show the specific counting functions according to the class of tree mappings.

. #
Expressions for K/° and K7

C € {AccoRDANT, SEMI-ACCORDANT }
K{(Tye F1, Ty o) = K{ (11, T2) - (K5 (Fy, F2) — 1)
+KE(T1, T @ Fy) — K€ (T, F2)
+KE (T3, Ty @ Fy) — K€ (Ty, FY)
+KC(Ty o Fy, F5) + KC(F1, Ts ® b)) — 2KC(FY, F») (6.7)

The functionKS is defined as
K§(FLFo)= > o(M),
MeM;3
where
Ms={M € M(F1, F2) | M[i,j1 20 A Mlp,ql #0 = (i=p & j = q)}.
Any tree mapping inM3 consists of tree mappings between isolated subtreds @ind F, (SeeFig-
ure 6.1).
Fi= T} e T? e T2 e T} e TP o T5 o T]

Ma s M M2 | ey \ MI4S] M7
= T} e T2 ¢T3 ¢ TF ¢ T9 o TS o T

Figure 6.1. A tree mapping itM3: M = M[1,2]U M[3,3] U M[4,5]U M[7, 6]

6.1. Recursive Expressions of Counting Functions 117

C € {AccoRDANT, SEMI-ACCORDANT }
KS(F,0) =K§®0,F)=0
K§(Ty 0 F1, T o) = K{ (T4, T2) - (1 + K§ (F1, F2))
+ K (F1, Th o F2) + K§(T1 @ F1, Fy) — K§(FY, F) (6.8)

We show the correctness of Eq.(6.7) by Proposition 6.6 and its corollary.

Proposition 6.6 (Decomposition of Accordant Mapping) Let C be either Acorpant or Semi-
AccorpanT. Let Fy = @4 T} and F, = L) Ty . For non-emptyM C V(F1) x V(F3), the following
are equivalent.

1. M is aC-mapping.
2. All of the following properties hold.
(i) MT[i,«]is aC-mapping for alki € {1,n,}.
(i) M[x, j]is aC-mapping for allj € {1, n,}.
(iii) If M[s, 5] # 0, one of the following types of tree mappings holds.
(@) M = MTi, %]
(b) M = M, j]
(c) If M[p,q] #0,then§,j)=(p,q),i<p A j<gq,0ri>p A j> qholds.

Proof. (1=2) The property 1 implies (i) and (ii) by Proposition 6.5. In order to prove-p), it sufices
to derive a contradiction from the assumption that= M[i,], M # M[j,] and M[i, q] # 0 for ¢ # j.
From the assumption, there exist(z2) € M3, j], (y1,y2) € M[i, ¢] and (1, z2) € M[p, q] for p # 4,
and therefore the following holds in (F1) andv(F2).

T1-y1 <p T1-21=v1 and vy = Xa-Y2 >, T2~ 2.

Note that any two ofry, y1, 21 are comparable by the hierarchical order, singey; € Tf, z € 17,
z2 € T andy, € T3 . This contradicts the hypothesis thetis of C

(2=1) We omit the proof since it is obvious. |

Corollary 6.7 LetC be one of Acorbant and Smi-Accorbant. For C-mappings of type (c) in Propo-
sition 6.6, from F] to F; andM” from F}’ to F/, the tree mapping/ = M’ U M" is aC-mapping
of type (c) fromF] e F}' to) & FY'.

We assumé\/[1, 1] # (. The following show the contributions of the tree mapping of type (a), (b)
and (c) in Proposition 6.6 tK{ (71 e F1, T e F3).

(@) Kf (T1, Tz o F») — Kf (11, F») — K{ (11, T3)
(b) Kf (12, T1 o F1) — K (T2, 1) — K{ (T4, T2)
(c) K{ (11, T2) - (1 + K§(F1, F))

If M[1,1] = 0, the contribution tdK§ (71 e F1,T» e F>) is given as follows.

KC(T1 o F1, F5) + KC(F1, Tp o F,) — 2KC(Fy, F))

118

Chapter 6. Mapping Kernels for Trees

Expressions for K7™ and K5

mo_n 11 2,
K?LN(.f 11, : T3) = k(1 + K37,)

Z {(Klj) (A B Z(m — R - KA+ ﬁ;*;ll’fg)}

'MS ”

||
N

1i-1 1, 41,
{(”1 1- "5111 JA+ ﬁ”)+ Z(” — ko~ kg +Rgy)L+ "5;':177:)} (6.9)

K2

Leta,b,c, andd satisfy 1< a <b<njand 1< c¢ < d < ny.

b . d .
KO = KALN(i:a i, ® T3) (6.10)

We show the correctness of Eq.(6.9) by using the following proposition. (Proposition 6.8) and its

corollary.

Proposition 6.8 For non-emptyM C V(@4 T}) x V(O;Zl Tg), the following are equivalent.

1. M is an alignable mapping.
2. The following four properties hold.
(a) MTi, «]is an alignable mapping for alle {1,n,}.
(b) M[x, j]is an alignable mapping for ajl € {1, n,}.
(c) If M[i, 7] # 0, M[p,q] # 0 andi < p, thenj < q.
(d) None of ¢, j) satisfiesM[i, j] # 0, M[i,] \ M[i, 5] # 0 andM[*, 5]\ M[i, j] # 0.

Proof. (1=-2) To prove that (1) implies (2), it $fices to show thak/ is not alignable if {1, 3;2) € M[i,j],
(yla y2) € M[Za >k] \ M[Zaj] and (Zj_, 22) S M[*?]] \M[Zaj] for some 67.]) Sincexla Y1 € Tf andzl ¢ Tf’
x1-y1 < r1-2z1 = v1 holds. In the same way, - 2z, < x5 - 2z, holds. ThusM is not alignable.

(2=1) To prove that (2) implies (1), it stices to show that, - 2z, = yo - 2z, holds, ifx; - y; < x1- 21 for
any (1, z2), (y1, y2), (21, 22) € M.

If 21,31, 21 € T} for somei, the assertion is derived from (a). Therefore we assumg; € 77 and

= ¢ Ti. Further, letr, € T,y € TY andz, € Ty for j,p,q. If any two of j, p, ¢ are distinct, there is
nothing to prove. On the contrary,jif= p = ¢, x2- 22 = y2 - 22 is derived from (b). Sincg = p andq # j
hold by (d),l‘ZVZ2 = Y222 = V2 holds. |

Corollary 6.9 For any alignable mappings/’ from F/ to F/ andM" from F/ to F’, the tree mapping
M = M’ U M" is an alignable mapping frorf] e F}' to F) e

a b~ W N -

The entire situation is divided into the following cases.

. M[1, %] = M[x,1] = M[1,1].

. M[1, 4] # 0 for somej > 1 andM[i, 5] = 0 for anyi > 1.

. M1, 7] # 0 for somej > 1 andM][z, 7] # () for somei > 1.
. M[i, 1] # 0 for somei > 1 andM][s, 5] = 0 for any; > 1.

. M[i, 1] # 0 for somei > 1 andM{[i, j] # O for somej > 1.

By (1) of Proposition 6.5, Proposition 6.8 and Corollary 6.9, the contribution of each case stated

above orK{(e7, T}, ®7_, T?) is calculated as follows.

1.

2.

3

/iﬂ(l + nz’m)

Z (“13 — K1 1) (1+’%+1n)

6.2. Positive Semidefiniteness of Counting Functions 119

n m
1,4 Li-1 2 2,i—1 i+lm
3> > (“m‘ Rjj — — gtk) (1 + “j+1,n)
j=2 i=2
m
1,4 1,i—1 i+1,m
4, E (/{1,1 — K1) (1+ Ko n)

3
N

i i i i i+1,m
("’“Lj T hRyj-1 T Ryt “2,j71> (1 + "%Ln)

S
Il

N
<
Il

N

Expressions for K5

K5“(Fy,) = K§%(F, F) (6.11)

Eq.(6.11) is a direct corollary of the following proposition (Proposition 6.10).

Proposition 6.10 Let 71 = v1(®;2, T1) and Ty = v2(®]2, TJ). For non-emptyM C V(@7 T}) x
V(O?jl Trj), the following are equivalent to each other.

1. M U{(v1,v2)} is an accordant mapping frofy to 7>.
2. M is an accordant mapping of type (c) fromg’, T} to @72, 7.

. #
Expressions for K5° and K5

C € {SemMI-AcCORDANT, ALIGNABLE }
KS§(F1,) = KC(F1, F) (6.12)

Eq.(6.12) is a direct corollary of Proposition 4.22.

Termination

The left-to-right recursive evaluations of Eq. (6.3) to Eq. (6.12) terminate due to the base expression in
Eq. (6.6a). Each counting function can be evaluated by dynamic programing as in the case of the algorithms
for the tree edit distance. Hence, the time complexities aré)d¢r Tai, O(n2d?) for the alignable, Q¢?)

for the semi-accordant, and @) for the accordant mapping class, wherdenotes the size of trees, add
denotes the maximum degree.

6.2 Positive Semidefiniteness of Counting Functions

We assume that the label-similarity functiens positive semidefinite. Then intuition may suggest that the
positive semidefiniteness & is inferred from the fact thak¢(xz, y) is represented as a polynomial in
o(a,b).

However, this intuition is incorrect whehis AuienasLe. Consider the three forests, F> andF3, and
the label-similarity functiorr overX = {a, b, c,d, e, f, g, h} depicted inFigure 6.2is a counterexample.

The Gram matrix KA™(F;, F;)] is given by:

7+16c+82 7 6
[KA™N(F;, Fy)] = 7 7+ 8¢ 7
6 7 7+ 16¢ + 8¢2

Since its determinan® coincides with—7 + € - f,(e) for some quarticf, (), the determinanD is negative
for a suficiently small 0< ¢ < 1, and therefore, the matrix has at least one negative eigenvalue. This fact
means thaKK”"(z, y) is not a kernel function.

In contrastKC¢ is positive semidefinite whehis one of i, Semi-Accorbant and Accoroant (Corol-
lary 6.15). In what follows, we show an important proposition which plays a key role to prove the positive
semidefiniteness (Corollary 6.15).

The following notations are used in the next proposition.

120 Chapter 6. Mapping Kernels for Trees

1a 5 s
d f g
e h
a b c a b c a b c

1 ife=ye{ab,c}
olx,y)=qe ifx=ye{defgnh}
0 ifx#y

Figure 6.2. A counterexample to positive semidefiniteness

® m, n andd are all positive integers. Further, we assume {1,...,d}, i,j,a, € {1,...,n} and
koyla,ba € {1,...,m}.
e 74 is defined as follows.
T¢ = {(k1, ..., ka) € {L,...,m}* | ki < kipa}
In addition, for an arbitrary Ky, ..., kq) € {1,...,m}%, u(ky,..., kq) denotes a permutation of

(k1, ..., kqg) such that(ky, . .., kqg) € Z¢% . Thea-th element ofc € Z¢ is denoted by#]..

e When A% arem-dimensional square matrices parameterizediby) = {1,...,n}?, A denotes the
derivedmn-dimensional square matrix4fj]i,j:1_,_wn: the (mi + k, mj + [)-element ofA is defined
to be the , [)-element ofA%/, and denoted byl}’,.

* pis a homogeneous polynomial of degreia them? variablesX 1, X1», . . ., X;nm. Further, assume
thatp is given a representation of
p(Xlla XlZu cee 7Xmm) = Z Z CE’kalll e Xk?d,ld,?

ke{1,...m}d le{l,...,m}¢

wherek = (k1 ..., kq) andl = (1, - .,1q).- Note that such representationois not unique.

Proposition 6.11 Let A be a matrix of positive semidefiniteness. If there exists R for eachk €
{1,...,m}?such that; 7 = czcp, then then-dimensional square matrip(AY,, . . ., A%,)i j=1,...n IS
also positive semidefinite.

Proof. Since the matrix4 is positive semidefinite, there exisisn-dimensional square matrik = [Blg
such thatd = 'BB.

p(AY, .. AT Y

mm

d d
Z CE,fl_Il Bg:[zﬁ]w l_llBZ:[]f]a
e

ae{l,...n}4 pe{1,...,m}? k,leTd a=

m

d
= 2 X >l > allBi.
a=1 e

ae{l,..n}pe{1,...,m}? \ke{l,...,m}d

(]
(]

6.2. Positive Semidefiniteness of Counting Functions 121

This immediately indicates thap(A%,, . . ., A%] j=1. . iS positive semidefinite. 1

For a positive integelV, let 7y denote the set of ordered foregtsuch thatF'| < .

A universal tree7y is an ordered tree with a finite set of nodes, into which each fdrest Fy
is embedded preserving the hierarchical and sibling orders. When a single order-preserving embedding
er : V(F) — V(Zy) is assigned to each' € Fy, a pair of 7y and the sefer | F' € Fn}isused as a
common numbering scheme of nodes for &y Fy.

Let C denote an arbitrary subclass of Tai mapping, including, but not limited AQ, ALIGNABLE,
Semi-Accorpant and Accorbant. The only restriction imposed ahis to satisfy

{(1,v1), ..., (n,v)} € ME(F, F)

for arbitrary F, n andvy, .. ., v, € F. Inthe aboveKC¢ (Fy, F») denotes the set of th&mappings fromFy
to F>.

Definition 6.12 (Absorbent Mapping) The tree mapping clagsis said to be
F[:]: thei-th tree inF (i € [1, |F|]) absorbent

F[i]: thei-th tree inF (i € [1,|F]]) if and only if, for any NV, there exists a pair of a universal trég
and a set of embeddin@gr | F' € Fn} such that:

V(F]_ € fN)V(Fz € fN)V(M € V(F]_) X V(Fz))
[M € KS(F1, F2) <= (ep, X er,)(M) € KS(T, Tv)]-

If C is transitive the inverse of a gived-mapping and the composition of giv€amappings are all
C-mappings. In particulartM ¢ (F, F) under map composition forms a group.

Theorem 6.13 Leto : X x X — R} be positive semidefinite.
If C is absorbent and transitive, the functisi¥ |z, : Fy x Fy — R{ is positive semidefinite
for an arbitraryN.

Proof. First, the members df (7y) are numbered in preorder. From now an,denotes thé-th node of
Tn , andzy[F] doese . (zy) € V(F). Further, for givenF;, F; € Fy, A}, denotess (I(zx[F;]), l(z1[F;1)).
Note that definings({(z[F:]), [(x:[F}])) = O for zx[F;] = 0 or ;[F;] = 0 does not harm the positive
semidefiniteness of4}’].

Let Z¢ denote{(ki, ..., kq) | 1 < k1 < ... < kq < m}, wherem denotesV (Zy)|. For arbitrary
k.l {1,...,m}, under the notation of

Mﬁ,f: {(xkla ml:L)a ceey (xkda mld)}a

ci. ris defined as follows.
1, if k,0'e 7¢ andM; ; € MC(Ty, Tw);
Cy = ’
kL7 10, otherwise.
Note that an arbitrary/ € MC(Fy, F>) has exactly one instance d?f,(f) such thatM}; ;= M andcj, ;= 1,

since a Tai mapping preserves the preorder.
The following properties are derived from the hypothesis ¢hiattransitive.

1. CE,E =1
2. CE,f: Cf,E'
3. Ifc = Cﬁ,f’ = 1, thencmﬂ, =1.

ConsequentlyZ< is decomposed into the disjoint union®f, ..., Z< , and the following holds.

s tay

_J1, it k,Te z¢ for some 1< o < ay;
~)0, otherwise.

122 Chapter 6. Mapping Kernels for Trees

For each/¢, define the homogeneous polynomigl: of orderd by

pIg(Xllv'~~7Xmm): E E Xklll"‘Xkdld'
kezd leTd

Itis apparent thapz. satisfies the hypotheses of Proposition 6.11 by defining

{1, if i e 79;
Ck_

0, otherwise.

3

Therefore, pra (A%, ... A,)]s positive semidefinite.
Thus, to complete the proof, it fiices to show that the sum of all pf. (A}jl, ..., A% Y coincides
with K€(F;, F;), and it is apparent, sineis absorbent by hypothesis. i

It is easy to see thatadorpant, Semi-Accorpant, ALIGNABLE and Tar classes are all absorbent.
In contrast, the alignable mapping class is not transitive as shown in Proposition 2.58. Therefore, we
immediately have the following proposition.

Proposition 6.14 The counting function of alignable mappings is not a kernel.
Thus, Corollary 6.15 gives the main assertion of this chapter.

Corollary 6.15 LetC be one of i, Semi-AccORDANT, ACCORDANT. K¢ |7yt Fn x Fn — R is positive
semidefinite for an arbitrary, if and only ifo : £ x £ — R} is positive semidefinite.

Theorem 6.13 has a wide range of applications. For example, the subtree-congruent mapping class is
absorbent and transitive. Moreover, letak-Tai, LEar-Semi-Accorbant and LEaAr-AccorDaNT respectively
denote the subclasses ofi;TSemi-Accorbant and Accorpant such that, forlM belonging to the subclasses,
x andy are both leaves ifa(, y) € M. They are also absorbent and transitive. Therefore, the counting
functions for those mapping classes are positive semidefiniteness.

Proof. First, a universal tre€y is defined. The universal trég; and an embedding (i.e. an injective map)
e: V(F) — V(7y) are chosen to support the following notations and properties.

e All the nodes of7 are numbered so as to satisfy the following conditions.
(i) The numbering starts with 1 and is sequential.
(i) If 2 < y, then the number assignedztas larger than that assignedgo
(iii) If x < y, then the number assigned:itds smaller than that assignedijo
Note that such a numbering uniquely existsdenotes theé-th node of7y .
® ¢ packsV(F) close leftmost and topmost (7x N) in the following sense.
(i) If 2; < x; are children of the same parent and jfc e(V (F)), thenz; € e(V(F)).
(i) If 25 < <azpandifa;, zi, € e(V(F)), thenz; € e(V(F)).
(i) If Fis atreeg(root(r) is coincident withe, which is the root of/y.
(iv) If F'is not a treeg,, which is the leftmost child of1, is ine(V (F)).
o 1;[F]denotes—1(x;) € V(F).
® Ay, x; = o(l(zi[F1]), l(z;[F2])), for given Fy, I € Fi.

Letﬁ andl be non-decrgasing serieses of ordeHencek, < bk, < ... < k,and1 <L < ... <1,
hold fork = (kq, ..., k,) andl = (ls, .. .,l,). Then,c; ;-is defined as follows.

R

_ 1a if {(xkl’zll)""?(xkn”rln)} S MC(TNvTN)r
0, otherwise.

SinceC is one of 1, Semi-Accorpant and Accorpan, the following hold.

6.3. Summary 123

1. Cla
2. CE, e
3. If CE,f: CE,P =1, thencﬁ, =1.

c=1
r=r

Note that the property 3 does not holds tru i ALIGNABLE.
As a consequence of the above propertigs, .., Z;; exist and satisfy the following.

e 7" is a set of non-decreasing serieses of order

® INNIN =0fora+d

* For anyE,fe Iy cgr=1.

* If ¢; = 1 for non-decreasing seriesesand?, thenk, I € Z7" for somea.

Therefore, the homogeneous part

po(Xan - XgR) = D Y Xt X,

k[l..ﬁ] 1[1.,1\7]

is decomposed into the sum of

pry(Xas, o X5 = D0 D Kbty Xt
kezn lezy

Since it is apparent thatz. satisfies the hypotheses of Proposition 6.4, (A1s, ..., Ayy) defines a
positive semidefinite matrix. 1

6.3 Summary

A generalization of tree kernels due to Collins andip{ICDO01], and due to Kashima and Koyanagi [KK02]

is addressed in this chapter. Based on the notion of tree mapping, which depicts a common sub-pattern
between two trees, it is shown that these existing kernels are the counting functions of tree mappings.
By focusing on four major classes of tree mappings proposed in the field of the tree edit distance, four
counting functions of tree mappings are proposed according to the four classes. In addition, it is proved
that three of the four counting functions are kernel functions, and the other is not by checking their positive
semidefiniteness. One of the three tree kernels developed in this chapter turns out to be the elastic tree kernel
due to Kashima and Koyanagi. The other two tree kernels are more general than existing tree kernels in the
interpretation of common patterns occurring between two trees. We summarize the counting functions of
tree mappings for the tree kernels in Table 6.1.

Table 6.1.Kernels by counting functions of tree mappings

Tree mapping Counting function PSDf
Tai mapping [Tai79] K™ (§6.1.2) v
Alignable mapping [JWZ95] KA™ (§6.1.3)

Semi-Accordant mapping [Zha95] KA« (86.1.3) v
Accordant mapping (8 4.8) K* (8 6.1.3), Elastic Tree Kernel [KK02] v
Common Subtree Isomorphism [Val98] Labeled Tree Kernel [KK02] v
Bottom-Up Common Subtree Isomorphism [Val98] String Kernel for Trees [VS02] v

1PSD stands for positive semidefiniteness.

Chapter /

Spectrum Kernels for Trees

Most of the existing tree kernels [CD01, KK02, KSK06a] run in quadratic time with respect to the size of
the input trees. Also, the kernel function has to be evaluated for most pairs of trees in the training data and
test data. As a result, classifiers based on these kernels are too slow for real world applications.

The kernel trick used in their works contributes a significant reduction of computation time, from
exponential time for explicit enumeration of common patterns to quadratic time for implicit enumeration
by dynamic programming.

Therefore, for moreficient computation, it is important to design an explicitly computable feature
vector with low dimension, but with gficient expressive power.

In this chapter, we propose an expressive affidient tree kernel based dree g-grams subtrees
isomorphic to paths witly nodes. Note that, by using a linear time algorithm for counting-@tams in
a tree, the tree kernel based on tgegrams is very ficient for most practical situations. Thespectrum
kernel for trees is identical to the spectrum kernel for strings if strings are given as trees in which every
node has at most one child.

In contrast to the tree kernel by Vishwanathan and Smola [VS02] (one of the linear-time kernels), our
kernel has enough expressive power to consider the internal structures of trees, and is still computable in
linear time.

7.1 Tree g-Grams

In this section, we extend the notion gfgram for strings [JU91, Ukk92] to trees. Let us begin with
introducing a few notions for representigegrams for ordered labeled trees. LEtbe an ordered tree
in which each node; is indexed by left-to-right postorder numbering. We formulateddpth sequence
D(T), thelabel sequencé(T"), and theparent sequencS (1) of T' with n nodedn left-to-right postorder
as follows.

D(T) = dep(i)---deppn),
L(T) = Il(v1)---1U(vn).
PST) = par@):--par@,-1).

We denot€d(v;) by [; for short. Note that the original depth sequence in [A®R] has been defined by
usingpreorder.

Example 7.1 Consider the tre@" in Figure 7.1 The depth sequence, the label sequence, and the parent
sequence df are given as iTable 7.1 |

For a treel’, and the depth sequenée= D(T'), we denote majd | d € D} by maxD. It is obvious
that dep{") = maxD.

125

126 Chapter 7. Spectrum Kernels for Trees

acl ao2 aocd4 bo7 bo9 boll

Figure 7.1. An ordered tree with postorder numbering

i1 1 2 3 45 6 7 8 9 10 11 12 13 14
d 3 3 2 32 1 3 2 3 2 3 2 1 0
I, a a b ab a b a b a b a b b
pp 3 3 6 5 6 14 8 13 10 13 12 13 14—

Table 7.1.The depth sequence, the label sequence, and the parent sequéhce of

Note that the reversal of the depth sequence in postorder under left-to-right order of children is the
depth sequence in preorder under right-to-left order of children. Then, by using the algosithrm P
Algorithm 7.1, the parent sequené®(T) of T is obtained from the depth sequencel®fn O(|D|) time
and O(maxD) space.

Algorithm 7.1 Pseq

procedure Pseq(D)
/* D: a depth sequence in postorder
T[0] — |D|
for i = |D| — 1 downto 1 do

PS[i] < T[D[:] — 1] T[D[]] « ¢
return PS

We define aree g-gramsfor trees as dine treeconsisting ofy nodes in which any node has at most
two adjacent nodes. For an alphaBetve denote the set of ajfgrams byL{. Theg-grams have; — 1
kinds of isomorphic patterns if the labels are ignored. Then, we diyigeams intog — 1 patterns by
the first depthk in its depth sequence (that is, the depth of the left leaf), and denote the pattefiys by
(1 <k < ¢g—1). We sometimes denotegagram by (¢, l1 - - - I;), which is the pair of a patter®), and
label sequench - - - I, € £? (SeeFigure 7.2).

LetT andP be trees. Then, we say the&tmatched” at a nodew if there exists a one-to-one mapping
f from the nodes of” into the nodes of satisfying the following conditions.

1. f maps the root of to v.

2. Suppose thaf mapsz to y andx has childreney, . .., x; from left to right. Theny has children
Y1, - - - » Ym SUCh thatn > k and there exists a monotone functign{1,...,k} — {1,...,m} such
that f(x;) = yeu) andg(iy) < g(iz) whenever; < i,.

3. I(x) = I(f(x)) for eachx € P.

Also, we say thafl’ has anoccurrenceof P if there exists a node in 7' such thatP matchesI” at v.
First, we design the algorithmakeeLGram to count all theg-grams occurring in a given tree as shown in
Algorithm 7.2.

7.1. Tree g-Grams 127

(P, abab) (P, baab) (P, abab)
ba0 ba0 bo0
aql aAl acl
bo2 be2 bo2
ae3

Figure 7.2.4-grams(Py, abab), (P, baab), and(Ps, abab)

Algorithm 7.2 LaBeLGraM

procedure LaseLGram(q, D, L)
/¥ D: a depth sequencé: a label sequency
/* initialize, whereP[k][w] andid[k][j] are empty*/
PS — Pseq(D)
for d = maxD downto 0 do
for k= 1to min{qg — 1, maxD} do
if k<d-—q+1+2k <maxD then
count[d] «— count[d] U {(d — g+ 1+ 2k, k)}
for d = maxD — 1 downto 1 do
for k£ = 1to maxD do
if 0<d+ k< maxD then
shift[d] « shift[d] U{(d + k, k)}
/* main routine*/
for i = 1to |D| — 1 do begin
foreach (4, k) € count[D[i]] do begin/* Count*/
W <« €
foreach! € id[j][k] do begin/* Label*/
ptl —1; pt2 «— i
for m = 1to k do
w «— w - L[PS[pt1]] pt1 «— PS[pt1]
form=k+1togdo
w «— w - L[PS[pt2]] pt2 «— PS[pt2]
PlE][w]++
end/* Label*/
end/* Count*/
if D[i] < maxD then/* Shift*/
foreach (j, k) € shift[D[i]] do
id[j1[k + 1] — id[j][k] id[jl[k] < O
id[j1K] — dd[j][k] U {i}
end/* for */
return P

In order to count all-grams of arunlabeledtree, it is sificient to count aj-gram P, with the right
leaf D[4] in the algorithm LsseLGram. This counting requires Q[D]) time by using two tablesountand
shift On the other hand, in order to count algrams of alabeledtree, it is necessary to maintain the
information of labels inj-grams.

The LaBeLGram scans a given depth sequence from left to right in analogy with a parsing algorithm,
and keeps track of all possible occurrenceg-gfams as succinct states during scanning. ThsilGram
employs two tablesountandshift The tablecountmaintains the deptli of the left leaf and the depti
of the right leaf inP;, in order to identify the patter®; just from its depths of two leaves. Note that, for
generality, we refer to the leaf and the root in patt&yn; as the left and right nodes respectively. On the
other hand, the tablghift maintains the depth of the left leaf and the deptof the root inP;, in order to
discard the possibility of the occurrenceyf.

128 Chapter 7. Spectrum Kernels for Trees

d Gk 0 Py (k=1) P, (k=2) P3J(k:3)
3 (21) : d

2 (32)(1,1) 1 J/} {d\

1 (22 g ¢ '

0 (33 5 . 7, ,-

Figure 7.3. The table count fog = 4 andmaxD = 3

P (k=1) P,(k=2)

S
2 (31) 5

d
/ d
1 (21).(3.2) ! /}
— T j

Figure 7.4. The table shift foy = 4 andmaxD = 3

Lemma 7.2 Let P, be ag-gram (1< k < ¢ — 1). Then, the following statements hold.

1. If dis the depth of the right leaf (or the rootkf= ¢ — 1) of Py, then the depth of the left leaf of
Pyisd—q+ 1+ 2k.

2. If d is the depth of the root aPy, then the depth of the left leaf @, is d + k.

Lemma 7.2 guarantees the correctness of the following construction of tahlasandshift Let D be a
depth sequence.

1. For 0< d < maxD, coun{d] consists of the pairgj(k) suchthat =d — ¢+ 1+ 2k, 0< j < gand

1<k<qg-1
2. For 1< d < maxD — 1, shiffd] consists of the pairsj(k) such thatj = d + k£, 0 < 5 < maxD and
1<k<qg-1

For example, the tablesountandshift for ¢ = 4 and maxD = 3 are described ifrigure 7.3 and
Figure 7.4, respectively.

Here, by *’ we denote the concatenation of two strings. The frequency af-t@m P, w) is stored
in P[k][w], and the indexw is stored inI[k]. Also freqj][k] consists of the pairsu, f) such thatw is a
string inX with length at most; and f is a positive integer that is the frequencywf andlabeld] of the
triples &, w, f) such that 1< k < ¢ — 1. In the functiorupdatdT’, Key, F'), T is either a tabléabel or freq,
andKeyis either &, w) for the tabletable, where we identify (€, w), f) with (k, w, f), or w for the table
freq.

The reason why the algorithmakerGram is necessary to maintain the information of labelg;in
gram is that a depth sequence is based on the postorder. Evarifdzam finds the depth of the left leaf
and the right leaf of somg-gram P, in “Count” routine, it never finds the labels of the internal nodes in
the path from the root to the right leaf ., which we call aright branch Then, the algorithm ABeLGram
finds their labels in the “Label” routine.

Note that every depth of internal nodes in the right branch corresponds to the depth nearest in the
right-hand side of the current depth in the depth sequence. Hence, the algosithnGkam stores the
string of labels when it finds somggram, where the string consists of the labels in a path from the left
leaf to the child of the root, and the right leaf. Furthermore, whenever it finds the depth of internal nodes in
the right branch, the “Label” routine in the algorithmideLGram concatenates a label corresponding to the
depth to the stored string in the taltédel.

Example 7.3 Consider the tree®; andT> in Example 7.6 €f., Figure 7.5), where

D(T1) = 33232132323210 D(T3) 32321332323210
L(T1) = aababababababb, L(12) = abababbabababb.

7.2. Spectrum Kernel for Trees 129

We have already given the tablesuntandfreqas shown in Figure 7.3 and 7.4. Then, the transitions of
freq[s][k] and labeld] for L aBeLGram(4, D(T1), L(71)) and LaserGram(4, D(13), L(73)) are described in
Table 7.2 Here,w; and,w; denote (v, f) € freqj][k] and &, w, f) € labeld], respectively.

Also the underlined element; in the i-th column offreq[j][k] is added tdabe[D[: + 1]] by the
“Count” routine in the {+ 1)-th iteration of the for-loop. On the other hand, the underlined elegmepin
thei-th column oflabeld] is added taP[k][w-l;;1]. For example, in the transition ¢dbeld] in Table 7.2,
the underlined elementabb, and;bab; in label[2] mean thatP[2][abba] and P[1][baba] are added to 2
and 1, respectively, becaugés the label of the depth 1 in the next column of their elements.

Hence, we obtain the 4-gram profilesBfand S as same as Example 7.6. |

Theorem 7.4 The algorithm Laser,Gram(D(T), L(T), q) counts allg-grams occurring in a tre& in
O(q - deg(l)?|T')) time and Og¢(deg()? + |X|) |T'|) space.

Proof. By Lemma 7.2, the following properties of the tablesuntand shift hold. (Note the following
properties of the tablesountandshift)

1. (4, k) € counfd] implies thatd andj are the depth of the left and right leavestf.
2. (4, k) € shiffd] implies thatd andj are the depth of the root and the left leaffof.

First, we show the correctness of the algorithesiLGram. Since the depth sequence is based on postorder,
di+1 andiy1 are the depth and the label of the right leaffgfin the depth sequend@(Py) = ds - - - dg,
and the label sequendgP;) = [1-- -, for 1 < k < ¢ — 1 respectively. Furthermore, fdt;, it holds that
dipr=d; —1fork+1<i<qg-—1.

On the other hand, fok(w- L[], f) stored inlabel[D[4]] by the “Count” routinew- L[] denotes the
label of theg-gram P, with the right leaf labeled by.[4].

Let D[4] be the current depth. Also suppose that the labels-[; (k + 2 < i < g — 1) have been
already found inL(P) = l1---1, by the “Count” and “Label” routines. Note that the “Label” routine
searches for the elementsiithel[D[j] + 1] and shifts them téabe[D[j]]. If d; = D[j] + 1, thenD[;] is
the depth of the parent of the nodefy labeled byi;. Hence/;,1 = L[j] andd;.1 = d; — 1 = D[j].

The “Label” routine concatenates every elemenkoé![D[5] + 1] to a label, until the length of such
an element ig, so LaeLGram can count all-grams with their labels.

Next, we consider the computational complexity abkLGram. The sizdabel[:] for eachi (0 < i <
d) is bounded by the maximum numberg@frams for the node i with the maximum degree. For a node
with degree ded(), the number ofi-grams with the root is bounded by de@()+(¢—2)deg{")(deg()—1),
because ouj-gram is isomorphic to a line graph, and the numbefpf, is at most ded(’) and the number
of P, (1 < k < ¢g—2)isatmost ded()-(deg(l)—1) as the combination of the left and the right leaves. Then,
the size oflabel:] is O(g - deg()?). The “Count” and “Shift” routines in hkeeLGram call justcounf D[]]
andshiff D[7]], respectively, both of which sizes are at mosyfor everyi. Also the “Label” routine
calls justlabel D[i] + 1] and transformsabel[D[¢] + 1] andlabel D[]], both of which sizes are at most
O(q-deg(")?). Hence, the time complexity ofdseLGram is (O(g) +O(q-deg)?)) |T'| = O(q-deg(l’)? |T|).

The size ofcountandshiftis O(gd) and the size ofabel is O(gd - deg(l')?). Also the size offreq
is O(gd|Z]), because the maximum number foéq[j][k] is the number of dterent labels, that is, @¥)).
Furthermore, since the number of @lyrams with the root as a fixed node isg@@@eg(")?), the number of
all g-grams inT is O(gdeg(l')?|T’|), which is the size of?. Then, the space complexity ofikeLGram is
O(q(d + d|=| + ddeg(T")? + deg(")?|T')) = O(q(deg(T)* + [Z))|T), sinced < |T'| andq < |T. I

In our experiments, the running time of this algorithm was almost on the order|®1)3nce the
degree of trees is bounded aps constant.

7.2 Spectrum Kernel for Trees

We first formulate th@-gram profilefor trees as in the case of strings. [Iébe a tree and® = (P, w) € L3
ag-gram, wherew € £9. We denote the total number of the occurrencesiaf () in 7' by #I'[(Py, w)]
for 1 < k < ¢ — 1. Then, the-gram profileof 1 is the vectoiG,(T’) = (#T[P])Peﬂg.

Now we are ready to present a new tree kernel as a similarity measure between two trees.

Chapter 7. Spectrum Kernels for Trees

130

Table 7.2.The transition of frefyj][k] and labe|d] in 71 and inT>

7k 3a 3a 2b 3a 2b la 3b 2a 3b 2a 3b 2a 1b Ob
3 1 az ap ap UH UH UH
3 2 ab; aby abs ba; ba; ba bay bag
3 3 abaz abaz abaz abaz abas abaz abaz abaz
. bab.
frecf][k] ==
2 1 E b 1 Um m ap w ap as
2 2 bay bay bay bay bay bay ba, bay
mcw
1 1 a ay a a1 a ag ai a
T b1
d 3a 3a 2b 3a 2b la 3b 2a 3b 2a 3b 2a 1b Ob
3 HUmH HWUH HNUM
2abba 1aa; iaa; iaaz 1aaz 1aas
2 HUWUH NGmmH NUWWH NUmmw
labeld] iaba; iaba; iabag
1 mcmcm
1aabs
0 wWUWUw
wUmUUw
7k 3a 2b 3a 2b la 3b 3b 2a 3b 2a 3b 2a 1b Ob
3 1 al az UH Um UH UH
3 2 ab; aby aby bay bas bas bag bay
3 3 aba, abap, aba, aba, aba, abap abay abay abay
. bab.
frecf][k] —
2 1 E UH UN m ap w ap as
2 2 bay bay bay bay bay bay bay ba, bay
mcw
1 1 a a ay ai ag a ag ai a
T b1
d 3a2b 3a 2b la 3b 3b 2a 3b 2a 3b 2a 1b Ob
3 HUWH HWUH HWUN
1babq 1aa; 1aa1 1aaz 1aaz 1aas
2 NQUGH NUmmN NUmmw wUmmm
WUm:& iaba; iabaz 1abas
1 2babo
Hmmcw
0 wwcmdm

wUmU_UA

7.3. g-Gram Distance for Trees 131

Definition 7.5 (g-Spectrum Kernel) Let 73 andT> be trees. Then, thespectrum kernedf 77 and 7>
is the inner product of7,(71) andG,(1>) as follows:

K(T1,T2) = (G4(T1), G4(T2))

Table 7.3. The4-gram profiles off} (left) andT; (right)

aabb 3 (6,8),(6,10),(6,12) aabb 3 (5,8),(5,10), (5,12,
P abab 3 (8,9),(8,11),(10,11) P abab 3 (8,9),(8,11),(10,11)
baba 1 (3,4) baba 1 (2,3)
abba 2 (1,5),(2,5) abba 1 (1,4)
P, baab 3 (7,10),(7,12),(9,12) P, baab 5 (6,10),(6,12),(7,10),(7,12),(9,12)
babb 2 (3,13), (5, 13) babb 2 (2,13),(4,13)
p, abab 3 (1,14),(214),(4,14) p, abab 2 (1,14),(3 14
® pabb 3 (7,14),(9,14), (11, 14) ® pabb 4 (6,14),(7,14),(9,14), (11, 14)

acl ao2 aoc4 bo7 bo9 boll

Figure 7.5. The treesl; andT> in Example 7.6

Example 7.6 LetX = {a, b} and consider the 4-gram profiles of the trégsandT’, shown in Figure 7.5.
Here, the numbers to the right of nodes describe the postorder. Then Table 7.3 dénhatds(ch that
#[(P;, w)] > 0 and #%[(P;, w)] > 0 in the 4-gram profile and their values, respectively. Héteyp)
denotes the path fromto v in T3 and7%. Hence, the following statement holds.

(3,3,1,2,3,2,33),(3,3,1,1,5,2,2,4))
= 58

K4(T1,1>)

7.3 g-Gram Distance for Trees

We deviate here from tree kernels, and consider a distance measure based;agrares. As in the case
of strings, we can defing-gram distancdor trees as follows.

Definition 7.7 (g-Gram Distance) Let 71 andT, be ordered labeled trees, andddte a fixed natural
number. They-gram distancédetweeril; andT> is defined as follows:

q—1

DSZSRAM(Tl, Tp) = ||Gq(Tl) _ Gq(TZ)Hl = Z Z |?'-'}5T';|_[(f)i7 w)] — #[(F;, w)]l .
i=1 wekd

We remark that the-gram distance is not a metric but a pseudometric in the mathematical sense since
it may beD (11, 73) = 0 even ifTy # T>.

132 Chapter 7. Spectrum Kernels for Trees

Example 7.8 LetX = {a, b}, and consider the 4-gram profiles of the trégandT, described in Figure 7.5.
DERAM(TL TZ) = ”(37 33 17 2> 37 27 33 3) - (3> 37 17 13 5; 2> 27 4)”1 =5.
I

A theoretical property ofi-gram distance has yet to be well analyzed in order to apply this distance
measure to anficient filtration of tree edit distance.

7.4 Gram Distribution Kernel

We also present another tree kernel based ongtigrams for smoothing the kernel values from variqus
to interpolate the patterns of various lengths. A gram distribution kernel is a generalization of the spectrum
tree kernel for this purpose.

By maxpati{7T’) we denote the number of nodes on the longest unique path ilssumem =
maxpatlfl’). Then, thegram distributionG(T") of T is the following sequence of ajl-gram profiles for
everyg (1 < ¢ <m).

G(T) = (GUT), ..., Gu(T)).

Definition 7.9 (Gram Distribution Kernel) Let 73 and 7> be trees, and andn =
min{maxpati{71), maxpatif7>)}). Then, thegram distribution kernebf 71 andT; is the sum of the
inner products of-gram profiles ofl; andT> for all the possibley as follows:

m

K(T1,T3) = Y (Go(Th), Go(T2)).

q=1

The algorithm laeecGramDist in Algorithm 7.3 can compute the gram distribution of a tree from its
depth sequenc®, label sequencé and parent sequenc®S§ which is the main advantage in using the
gram distribution kernel.

The notations in the algorithmaeeLGramDist are almost the same asdeLGram. The frequency
of the g-gram (P, w) is stored inP[¢][k][w]. Also, freq[j][k] consists of the pairsu, f) such thatw is
a string overz with length at most; and f is a positive integer that is the frequency:oef In the function
update(T, v, F), T'is an element of a tabkeeq, andv is a string. Note thamaxpatlfl’) < 2dep(’) + 1. In
the algorithm LaBeLGramDist, we assume that 2dep) + 1 < |T7].

The main diference between the algorithmsagerGramDist and LaseLGrawm is the construction of
the labels of the right branch. InakeLGram, we have adopted the tadkbel and constructed the labels
of the right branch, with running the main routine. In contrast, whenexetiGramDist finds somey, it
computes the labels of the right branch for the fogrgtam, by using the parent sequence.

For each node in a treeT" rooted atr, let UP,.(v) denote the unique path fromto r. In particular,
UP,.(r) = {r}. In order to compute the value gfandrb in the “Count” routine, we use the following
relationship amongd, j, k and|UP,.(p)| for ag-gram P/.

1. For somey, let P! be ag-gram (1< k < ¢ — 1), and letd be the depth of the right leaf d?! and;
the depth of the left leaf aP!. Then, it holds thay = d + 2k + 1 — j (Figure 7.6 (left)).

2. For somey, let P! be ag-gram (1< k < ¢ — 1), and letd be the depth of the right leaf d?! and;
the depth of the left leaf oP!. Furthermore, let andp be the root and the parent node of the right
leaf of P/, respectively. It thus holds theb(= |UP,.(p)|) = d — j + k (Figure 7.6 (right)).

LetT be a tree andh = mazpath(T). Then, we denote the number offérentg-grams occurring in
T by N4 and>>7", N7, by N7. Note that

Nr o <min{|T|, |27, deg)?} and Ny < min{|T|, |Z|™, deg)™}.
Theorem 7.10 Let D and L be the depth and label sequenced ofrespectively. Also suppose that

h = dep(l). Then, the algorithm kseLGramDist computes the gram distribution @fin O(h2Nr|D)|)
time and inO(N7 + h? + | D|) space, by traversin® twice.

7.4. Gram Distribution Kernel 133

Algorithm 7.3 LaBeLGramDist

procedure LaBeLGramDist(D, L, PS
/* D : adepth sequenceé,: a label sequenc®S: a parent sequencg
/* initialize, where2 maxD + 1 < |D| */
for d = maxD — 1 downto 1 do
for k = 1to maxD do
if 0 <d+k < maxD then
shiffd] « shiffd] U {(d + k, k)}
PL « parentlist(D)
for ¢ = 1to | D| do begin
PA[O][LLi]]++
for j = maxD downto 1 do begin/* Count*/
for k =1tojdo
foreach (w, f) € freqj][k] do
q— D[i]+2k+1—jrb—D[i]—j+k s—¢e pt—i
for m = 0to rb do begin/* Label*/
s« s-L[pt] pt— P3pt]
end/* Label*/
w—w-s Plg][k][w] — Plql[k][w] + f
end/* Count*/
if D[i] = Othen break
if D[] < maxD then
foreach (4, k) € shiff D[4]] do begin/* Shift */
foreach (w, f) € freqj][k] do
updatéfredj][k + 1],w - L[4], f) fredjl[k] < fredljI[k] — {(w, f)}
end/* Shift*/
updatéfreq D[1][1] , L[], 1)
end
return P

function updatéT’, v, I)
/* T : an element ofreq][], v : string*/
if I(w, f)eTst.f>0thenF «— f+ FelseT «— T U{(v,F)}

dep(r)=j-k
dep(r)=j-k

UP,(u)

o |UP(u)l=d-(4+1

UP(u)

dep(v)=j dep(u)=d

dep(u)=d
|UP(v)|=k+1 |UP(u)|=d-(j-k)+1 v dep(v)=j

Figure 7.6. The relationship amond, j, & and |UP,.(p)| for a g-gram P

Proof. In order to show the correctness ofdeLGramDisT, it is suficient to show the correctness of the
“Count” routine, by using the correctness ok mDist of computing the gram distribution for unlabeled
trees.

134 Chapter 7. Spectrum Kernels for Trees

Due to the relationship among j, k and|UP,.(p)| for a g-gram P, for every (v, f) € freq[5][¥],
LaseLGramDist correctly computeg andrb, respectively. LeP/ be the found;-gram. Thenw is a string
of the left branch of?/. Sincerb is the number of nodes in the right branchrff, the “Label” routine finds
the strings concatenating the label of right leaf (in the case that 1) to the labels of the right branch (in
the case that X m < rb) in postorder, with traversing the ancestors of the right leaf by using the parent
sequenc®S Hencew - s is the label sequence &f/.

Next, consider the computational complexity ofseLGramDist. The size of the tablshiftis O(h?).
Also the size of the tableeqis O(Nr). Furthermore, the size &L is O(| D|). Finally, Sincemazpath(T) <
2h+1, the size of? is O(Nr). Hence, the space complexity oféeLGramDist is O(h2)+O(N1)+O(|D|) =
O(N7 + d? + | D)).

On the other hand, sine# is bounded by, the time complexity of the “Label” routine 9(%). Since
the size offreq[j][k] is O(Nr), the time complexity of the “Count” routine 8(h?N). Since the “Shift”
routine calls justshift[D[¢]] of which size isO(h), the time complexity of the “Shift” routine i©(hNr).
Since the time complexity of the initialization @(h? + | D|), the time complexity of kBeLGrRaMDIST iS
O(h? + | D|) + O((h?>Nt + hN7)|D|) = O(h®Nr|D)).

Finally, the algorithm leeLGramDist traversesD twice, that is, the construction of the parent se-
guence and the main routine. 1

The algorithm runs in O¢|T'|?) time and Og? + |T'|) space sinc&Ny , < min{|T|, |Z|¢, deg(l)?}

and Ny < min{|T|, |Z|™,deg@)™} for m = maxpat{T’). In our experiments, the running time of this
algorithm was on the order of ((|?).

Example 7.11 Consider the tre& in Figure 7.1. Then, the transition of the talfteq in the algorithm
LaBeLGramDist is described inTable 7.4 Here, (v, f)¢" denotes thaf is the frequencyy is the depth
sequence of thg-gram, and- is the number of nodes in the right branch of thgram. The underline part
of v is corresponding to the stringin the algorithm laseLGramDisT, that is, the labels of the right branch.
In contrastw is the labels of the left branch. Note thaty andr are not stored in the tabjeeq. |

7.5 Summary

In order to develop a fast tree kernel with afizient expressive power for practical use, we extend the
notion of g-gram for strings to trees. We employ a very simple form of subtreesqniibdes ag-grams,

and show anfécient algorithm for counting treggram occurring in a tree by using dynamic programming.
Based on the number gftgrams, we define a spectrum tree kernel, agegagam based distance measure
between trees. Moreover, we propose a gram distribution kernel as a generalization of the spectrum tree
kernel. In the next chapter, we demonstrate tfieativeness of these tree kernels by applying them to
biological data.

7.5. Summary 135

Table 7.4.The transition of the table freq if.

i 1 2 3 4 5 6 7

pi 3 3 6 5 6 14 8
ik 3a 3a 2b 3a 2b la 3b
3 1 @3 (@232 (@, 1)%° (b,)22
3 2 (ab, Z)ababa (ab, 2)abba (ab, 3)aba
3 3 (aba, 3) 1y (@02, 370
2 1 (b, Dl (0, 13pe (b, 22"

2 2 (ba, z)bababb (ba, 2)baabb
11 @ l)ababb @, 1)aabb
i 8 9 10 11 12 13 14

i 13 10 13 12 13 14 —
ik 2a 3b 2a 3b 2a 1b Ob
3 1 (b,)20 (b,)22
3 2 (o 1)babab (ba, l)baab (ba, z)babab (ba, 2)baab (ba, 3)bab
3 3 (aba, 3)ai3aba7bb (aba, S)abaabb (aba, 3)abab@ (aba, 3)abaabb (aba, S)ababg (aba, S)abab

(bab, 3)babb
2 1 @l (& 1 (2 2o @25 @3
2 2 (a Z)bababb (ba, 2)baabb (ba, Z)bababb (ba, 2)baabb (ba, Z)éétg (ba, Z)bab
2 2 (ab, 3)abb
11 @ 1)ababb (a 1)aabb (a l)ababb (& 1)aabb (a 1)abb (@3

2,0
(b, 1)y,

Chapter 3

Application to Glycan
Classification

In the previous chapter, we have proposed two novel tree kernelspaatrum tree kernelnd thegram
distribution kernel The spectrum tree kernel is a natural extension of the spectrum string kernel based on
the notion of tregj-gram, and the gram distribution kernel is a sum of spectrum kernels with varying values
of q.

In this chapter, we evaluate th&ectiveness of these two kernels by empirically comparing their
computation time and predictive performance in a glycan structure classification problem with the existing
tree kernels.

8.1 Glycan Data

Glycans or sugar chains [Var02] are defined as the third major class of biomolecules next to DNA and
proteins. They are polysaccharide structures, or carbohydrate structures, often forming tree structures, as
opposed to the linear structure of DNA and proteins. They are known to be extremely crucial for the devel-
opment and function of multi-cellular organisms as they are found mainly on the cell surface and recognized
by various agents to signal a wide variety of events. Only in recent years, however, has bioinformatics fo-
cused on glycans, mainly because of the complexity in developing high-throughput techniques to character-
ize their structures. Databases have been developed for the public to freely search and browse carbohydrate
structures, with KEGBELYCAN [HGK *06], the Consortium for Functional Glycomics, and the German
Cancer Research Center (glycosciences.de) [L'BI4] leading the way. From this data, we are now able

to mine for structural features that may not be readily clear to the naked eye. In fact, several probabilistic
models have been developed recently to attempt to mine such patterns [AKUMKO6, H&KU

For glycan structures, Hizukust al. [HYN*05] proposed a glycan-specific kernel, to which we
refer as thdayered trimer kernel This kernel is designed according to the characteristic mechanisms of
glycan recognition. In the kernel, the feature space is defined as the set of all the trimers in each layer,
and the attribute value is the number of occurrences of trimers weighted according to the significance of
components. By using the SVM with the layered trimer kernel, Hizuktidl. successfully showed the
effectiveness of their approach by the classification of blood components, and they extracted leukemia
specific glycan motifs in humans computationally for the first time.

The trees we deal with in our kernel are node-labeled trees while the structure of a glycan is abstractly
represented as a tree consisting regarding single sugars as nodes and the covalent bonds between them as
edges, i.e. the nodes and edges are labeled. Therefore we regard each edge label as the prefix of the label
assigned to the node right under the edge. We have also incorporated information indicating root and leaf
nodes.

In this chapter, we compare our tree kernel with the tree kernel due to Kashima and Koyanagi [KK02]
and the layered trimer kernel due to Hizukatial. [HYN *05] in supervised classification problems. Con-
cretely, we deal with glycan structure classification problems in the field of bioinformatics. Classification
of glycan structures are a fairly important task since their functions largely depend on their structures.

137

138 Chapter 8. Application to Glycan Classification

In our experiments, we use comparable glycan data to Hizatudl. [HYN *05]. We have retrieved
glycan structures from the KEGGLYCAN database [HGKO06] and their annotations from the Carb-
Bank/CCSD database [DA92]. We employ the data set of four blood componeunkgmic cellserythro-
cyte serum andplasma as the class labels according to Hizukuri et al. [HY)S].

We also test our method on dldirent set of data to assess the generality of our method for extracting
glycan markers. Because of the larger amount of data and research that have been put into cystic fibrosis, we
select data related to this disease. Cystic fibrosis is one of the most lethal genetic disorders in Caucasians,
characterized by the production of excessive amounts of viscous mucus secretions in the airways of pa-
tients, leading to airway obstruction, chronic bacterial infections, and respiratory failure. Previous studies
indicated that CF-derived airway mucins are glycosylated and sulfafismteditly compared with mucins
from nondiseased (ND) individuals [XRD5]. In order to obtain the those structures that were related to
CF, we have extracted those entries that are annotated with the word “cystic,” “bronch,” and “respir” as
substrings. We have found that there arefigent number of structures representing each of these groups
to test our method. We have summarized the data used in our experiments in Table 8.1. Note that the total
numbers in the table are not the sum of each number of data since these data are overlapping.

Table 8.1. The data labels, and the number of each data set in the experiments

leukemia erythrocyte plasma serum total
191 274 144 202 480
cystic fibrosis respiratory mucin bronchial mucin total
53 123 110 153

8.2 Experimental Results
8.2.1 Computation Time

Figure 8.1describes the running time for computing the tgespectrum kernek, for 2 < ¢ < 8, and the

labeled ordered tree kernkl; proposed by Kashima and Koyanagi [KK02]. Here, the “computation time”

is the average time for computing each tree kernel function between all combinations of pairs of trees, after
randomly generating 10 trees with the size, degree, and size of alphabet at most 1000, 5, and 8 respectively.
Figure 8.1 shows that our kernKl, runs in all most linear time with respect to the size of trees, while the
computation time oK, increases drastically.

8.2.2 Glycan Data Classification by Spectrum Tree Kernel

In this experiment, we compare our spectrum tree kernel with the labeled ordered tredkglineduper-
vised classification problems. Concretely, we deal with glycan structure classification problems in the field
of bioinformatics.

We had fourteen kinds of node labels. We have summarized the data used in our experiments in
Table 8.1.

We used LIBSVM [CLO1] as the SVM implementation, and used the area under the ROC curve
(AUC) as the performance measure. The AUC is a prevailing performance measure of a decision function
with a kernel to separate positive examples from negative ones. The AUC values range from 0.5 to 1.0,
where the value 0.5 indicates a random separation whereas the value 1.0 indicates a perfect separation.

8.2. Experimental Results 139

4.0
——g=2
35 ——q=3
——q=4
5 30 r — =5
g e e
225 | &=
E +q=7
H
£ 20 F —*g=8
g e Kt
=
2 1.5
g
5)
@]
1.0
0.5
0.0
0 500 1000 1500 2000
Number of Nodes

Figure 8.1. The running time for computing; andK,

1.00

Hg=1 O0q=2 Wg=3 Oq=4 Og=5 Wq=6 OKt BKs

0.98
0.96

0.94

0.92]
0.90
0.88
0.86 _

Area Under the ROC Curve (AUC)

0.84

leukemic cell erythrocyte plasma serum

Blood Component

Figure 8.2. Area under the ROC curve

8.2.3 Predictive Accuracy

Figure 8.2 shows the comparison of the results by the proposed method with varying the pargntieter
labeled ordered tree kerndi§; [KK02], and the tree kernel due to Vishwanathan and Sni6lgVS02]
(in the area under the ROC curve (AUC). All the performance measures were measured by 5-fold cross
validation.

The approach by Hizukuet al. [HYN*05] roughly corresponds to the cage= 3 (with various
biological heuristics), but the spectrum tree kernel achieves the better performances at éxcggt for
the clasdeukemic cell This result supportsfiectiveness of incorporating various structural contexts in
trees.

The tree kernel due to Vishwanathan and Smola also gave relatively good performances in spite of its
restricted expressive power. Since the nodes near the leaves tend to determine the functionalities of glycans,
this data set seems to be well-suited to this tree kernel.

140 Chapter 8. Application to Glycan Classification

1.00

1.00 O gram distribution kernel
O gram distribution kernel
B layered trimer kernel M layered trimer kernel
095
095 -
= 090
= 090
0.85
085
0.80
0.80 respiratory bronchial cystic
erythrocyte leukemia plasma serum mucin mucin fibrosis

Figure 8.3. The performances of the SVM classifier for the gram distribution kernel and the
layered trimer kernel

It is surprising that the spectrum tree kernel outperforms the labeled ordered tree kernels in spite of
its expressiveness of structured information, which indicates that the expressive power of the spectrum tree
kernel is moderate for glycan data, and prevents overfitting to the training data. This encourages us to apply
our kernel to the data in other application domains on which the spectrum tree kernel performs better, but
still with almost linear time (quasi-linear time) for kernel computation.

Also, it is interesting to point out that the valgechieving the predictive performance varies among
the class labels, which indicates that tlkeetive length of the patterns varies among class labels.

8.2.4 Motif Extraction by Gram Distribution Kernel

We use the decision valugz) obtained from the trained SVM to evaluate the contribution of each feature
(i.e. g-gram pattern) in order to identify the glycan substructures characteristic to the target class. We define
thefeature scorer'(f) [HYN *05] to indicate the significance of a featyfeo be

F(f)=Y_ 6@)- L),

reX

wherel,.(f) is the indicator function defined b, (f) = 1 if « contains a featuré.

Features with large absolute values of feature scores are indicaifsof glycan substructures play-
ing key roles in discriminating the class label. Furthermore, we can compose larger and more complex
substructures by overlapping more than grgram pattern.

8.2.5 Results and Discussion

We have evaluate thdfectiveness of our gram distribution kernel by empirically comparing its predictive
performance against the layered trimer kernel on glycan éagare 8.3illustrates the performance of the

SVM classifier for the two experiments as stated in the following subsections. For classifying multi-classes,
we employ the one-vs-rest approach with a binary classifier SVM. Performance is compared using the area
under the ROC curve (AUC) measured by 5-fold cross validation.

Leukemia-Specific Features

As shown in the left graph in Figure 8.3, our kernel and the layered trimer kernel show almost identical
performance. Since the top-scoring features are 3-mers as shown in the left gfaguivén8.4, the layered
trimer kernel is well fit to these data sets.

8.2. Experimental Results 141

q (size of features)

Discriminant Score

0 1000 2000 3000 4000
Feature
* leukemia x erythrocyte 4 plasma - serum
q (size of features)
12 3 4 5 6 7 >7

70

Discriminant Score

-110

0 200 400 600 800 1000
Feature

e cystic fibrosis % bronchial mucin - respiratory mucin

Figure 8.4. The distributions of feature scores

As listed in Table 8.2, the top-scoring features in the leukemia data set are in the 200 range and com-
pletely consists of subsets, or completely match the top-scoring substructure from the results by the layered
trimer kernel. The second top scoring structure also comes immediately after this group of substructures,
scoring over 200. Correspondingly, on the erythrocyte data set, the top scores are around 120 and consists
completely of substructures, or completely match the high scoring substructures from the layered trimer
kernel Note that in our experiments, we incorporate information indicating root and leaf nodes, which we
indicate in this table.

In contrast, we have obtainedi@irent resulting features for the serum and plasma data sets. However,
this can be explained by the fact that these data sets were less specific, resulting in the low scores from both
methods. Thus, although our method does not require any special weighting techniques, it has been able to
produce similar results as the previous method. On top of that our method allows us to find substructures
larger than trimer structures. In fact, a 6-mer structure scoring 200 is also obtained.

Features Captured for Cystic Fibrosis

We first look at the accuracy performance of our method and compare it to the layered trimer method. We
find that the AUC scores are much higher for all three data sets, compare to the slightly higher performance
of this previous method on the leukemia data set (See Figure 8.3).

142 Chapter 8. Application to Glycan Classification

Table 8.2. Features extracted by our method

leukemia

Score Substructure

226 (leaf)NeuAc2«3Gal-34

201 (leaf)NeuAc2a«6Gal-34

201 (leaf)NeuAc2a3Gal-84GIcNAc-32

200 —Gal-#4GIcNAc-32Man-«6Man-84GIcNAc—34GIcNAc(root)
200 —Gal-#4GIcNAc-32Man-«3Man-84GIcNAc-34GIcNAc(root)

erythrocyte

Score Substructure

122 -Gal84GIcNAc33Gal-H4
86 (leaf)Fuce2Gal-84GIcNAc-33
86 —GIcNAc-H3Gal-54Glc—-31(root)
82 —Gal$4GIcNAc-33Gal-34GIcNAc—(3
81 (leaf)Fucea2Gal4GIcNAc—33Gal-534

Note that 1-mer and 2-mer substructures are found to have the top scores as shown in the right graph in
Figure 8.4. Looking at the features extracted from our method, the top scoring CF-related structures scored
63 and represent2 — 3 sialylated structures, which corresponds with the literature [MLGB92, DDRL99].

The second top scoring structure scored 39 and represents the sialylated galactose which are often found at
the non-reducing ends of these structures. We also find the 6-sulfated GIcNAcs in the higher scoring range,
as also mentioned in the literature [DDRL99]. In contrast, the highest scoring structures from the bronchial
and respiratory data sets are the non-sialylated substructures of the O-glycan core. This further supports the
possibility of the sialylated galactose substructure as being characteristic of CF.

8.3 Summary

In this work, we focus on explicit feature extraction from tree structured data. In order to assess the per-
formance of our new method, comparable kernels included the layered trimer kernet (3yahd Vish-
wanathan and Smola [VS02]. The latter is not included in our experiments due to its limited expressive
power; it only considers entire subtrees and cannot extract the internal structures as features. Other ker-
nels considered are the Collins andfBukernel [CD01] and the Kashima and Koyanagi kernel [KKO02].
However, both of these methods implicitly enumerate features; therefore, they cannot be used to directly
extract motifs from our data sets. Thus, the only kernel available that can be applied directly to glycans is
the trimer kernel, and our method outperforms it in the experiments. In addition, our method can be used
for other glycan data sets.

Chapter 9

Conclusion and Future Work

This chapter summarizes the results of this work, and concludes by discussing further issues to be addressed.

9.1 Conclusion

This thesis has focused mainly on two problems relating to tree structured data. Firstly, we have addressed
the tree-to-tree comparison problem based on edit distance. Secondly, we have applied the resulting theory
established in the first problem to a tree classification problem based on kernel methods, and developed
novel learning methods.

The notion oftree mappingsllows us to have a uniform approach to twdrelient problems, the
matching and learning problems in trees. These two problems are regarded as the following combinatorial
problems.

Edit-based tree matching: An optimization problenof tree mappings, in which a minimum cost of tree
mappings between two trees gives a common tree pattern or a distance measure.

Kernel-based tree learning: A counting problenof tree mappings, in which the number of tree mappings
between two trees gives a similarity or kernel function for learning trees.

In what follows, we review the more specific results of these two subjects and our contributions
along with the outline of this study. We began this thesis with a review of prior work on approximate tree
matching in Chapter 2, and gave the strict definitions of existing methods based on partially ordered set
theory instead of conventional ones. A variety of tree edit distance measures have been proposed in the
past three decades such as Tai distance, alignment distance, less-constrained distance, constrained distance,
structure-preserving distance, structure-respecting distance, top-down distance, bottom-up distance, and so
forth. These measures were described mainly in two ways, i.e. operational description and declarative
description. An operational definition of a tree edit distance measure dedoolvés compute the distance
by showing the procedure or the algorithm, whereas an declarative definition of a measure desgatbes
the measure is by means of a set-theoretical treatment. In particular, the notion of tree mapping has been
used in the declarative definition since Tai showed his distance measure is defined by using tree mapping. A
tree mapping depicts node-to-node correspondences between two trees according to the structural similarity.
During this review, we have identified a number of confusions and unsolved problems in prior work on tree
edit distance. These problems include the following:

e The declarative definitions of less-constrained distance given bstlal. is incorrect. It does not
coincide with the algorithm, and it defines dfdrent distance from what they originally intended;

¢ The tree mapping of alignment distance has been unknown for the past decade, i.e. there has not been
a declarative definition of alignment distance;

e Equivalent distance measures have been repeatedly proposed without being recognized.

145

146 Chapter 9. Conclusion and Future Work

These problems were all caused by the lack of a theoretical foundation for describing the semantics of tree
edit distance, and a means of bridging the gap between operational definitions and declarative definitions.
To surmount these problems, we have constructed a mathematical model of tree edit distance by using
partially ordered set theory in Chapter 3. This theoretical foundation enables us to deal with the semantics
of tree edit distance in a rigorous way. In Chapter 4, we have revealed the following facts:

® \We showed a correct declarative definition of less-constrained distance, and that the definition given
by Lu et al. turned out to represent the constrained distance given by Zhang.

¢ \We identified the condition of the tree mapping of alignment distance, i.e. a declarative definition of
alignment distance.

e We proved the equivalence among the strongly structure-preserving distance, structure-respecting
distance, and constrained distance. We also proved the equivalence between the alignment distance
and less-constrained distance.

Furthermore, we showed a hierarchical relationship among these edit distance measures.

The last half part of this thesis deals with a tree classification problem with the Support Vector Ma-
chine (SVM) based on kernel-based learning. In particular, we have focused on a kernel design problem for
trees. In Chapter 5, we gave a cursory review of tree kernels presented in prior work. From this review, we
found that some of these tree kernels are characterized by some classes of tree mappings. In fact, we showed
that a tree kernel proposed by Kashima and Koyanagi is the counting function of tree mappings in a class,
i.e. the accordant mapping. From this observation, we extrapolated that counting functions for the other
classes of tree mapping would also form new tree kernels. Then we applied the theoretical foundation that
we developed in the first half of this thesis to the design problem of tree kernels in Chapter 6. Specifically,
we proposed the algorithms for computing counting functions of Tai mappings, alignable mappings, and
semi-accordant mappings. We then showed that the counting functions of Tai mappings and semi-accordant
mappings are actually tree kernels and that these two tree kernels have more flexible expressive power than
the tree kernel proposed by Kashima and Koyanagi. In contrast, we showed that the counting function of
alignable mappings is not a tree kernel. All of these results have confirmed and provéethieemess of
our theoretical foundation of approximate tree matching.

In the next chapter, we aimed to develop a faster tree kernel without sacrificing its learning perfor-
mance as compared with the tree kernels proposed by Kashima and Koyanagi, which runs in quadratic time
with respect to the size of trees. Then we proposed a spectrum tree kernel based on the notion of tree
g-gram, which runs in almost linear time. In addition, we proposed its variant, a gram distribution kernel.
The basic idea of the spectrum tree kernel is that the more the same subpatterns are shared in two trees, the
more similar these trees are.

Finally, in Chapter 8, we evaluated thfextiveness of the two kernel based on tgegram by em-
pirically comparing its computation time and predictive performance in a glycan structure classification
problem with the times and performances of existing methods. We attained a good performance with our
tree kernels although we do not incorporate any biological knowledge specific to glycan data classifica-
tion. Moreover, by using the trained SVM, we successfully extracted common characteristic substructures
specific to a class of glycans.

9.2 Future Work

In the first half part of this thesis, we focused on the tree-to-tree comparison problem between two labeled
rooted trees. Two important problems immediately emerge from our problem setting by extension.

Firstly, we considered only pairwise comparison of trees in this thesis. A variety of multiple tree
comparison problems can be considered by extension such as a comrfgupstiree pattern problem
shared in more than two tree. From the theoretical point of view, it is intriguing to extend the notion of
each class of tree mapping to more than two trees, and to investigate the property of tree mapping. From
a practical point of view, if a tree mapping among multiple trees couldffigiently computed, it would
provide a general method for common pattern discovery in trees, and a wide range of applications would be
expected including motif extraction from biological data, schema extraction from XML data, and so forth.

Secondly, another challenging problem still to be addressed is the extension of our algebraic formula-
tion for trees to more general graph structures such as directed acyclic graphs, and planar lattices, in order to
develop new approximate matching methods for these structures. There is still need for more fundamental
investigation of this area since a widely-accepted model of the edit distance for general graphs has yet to be
established.

9.2. Future Work 147

In the second part of this thesis, we developed several tree kernels with high expressiveness. The
expressiveness is determined by the pattern language by which the number of subpattern occurrences in
trees are counted in computing the value of a kernel function. In this work, we employed several classes of
tree mappings angkgram as pattern languages for tree kernels. However, the tfatletareen two factors
of expressiveness of the pattern language and the learning performance has not been well investigated.
In fact, we expect that some pattern languages with high expressiveness such as Tai mapping and semi-
accordant mapping may not necessarily lead tofacsent learning performance, since Bringmaatral.
reported in [BZRNOG6] that the use of more complex patterns does not necessarily lead to better accuracy.
Identification of the tradeffs between our pattern languages is therefore an important area for further
investigation.

We reviewed some tree kernels which were originally thought to be in the class of Haussler’'s convo-
lution kernel. To our surprise, the elastic tree kernel proposed by Kashima and Koyanagi turned out to be
beyond this class. Nevertheless, we did showed that this class of counting functions is also guaranteed to
be a kernel. This fact implies that our mapping kernel leads to a more general framework superseding the
convolution kernel for designing kernels of discrete structures.

Finally, from a practical point of view, the tree kernels proposed in this thesis should be applied to a
wider variety of real-world tree structured data other than glycan data including XML documents and RNA
secondary structures.

Closing Remarks

Much work remains to be done. I, however, believe that the findings of this thesis provide fundamental and
effective contributions to assist in solving problems related to tree-to-tree comparison. | hope that these
results will encourage further advances in our understanding of approximate tree matching, and lead to
deeper insights into related problems.

[AAK *02]

[ABGO5]

[ACG*02]

[AFTO6]

[AHOO]

[Aku92]

[Aku96]

[Aku00]

[Aku06]

[AKUMKO6]

[Aok83]

[AS04]

[AYO+03]

[Bad06]

[BBPO4]

Bibliography

T. Asai, K. Abe, S. Kawazoe, H. Arimura, H. Sakamoto, and S. Arikaéggégient substruc-
ture discovery from large semi-structured daaoc. of 2nd SIAM International Conference
on Data Mining (SDM), 2002.

N. Augsten, M. H. Bhlen, and J. Gampekpproximate matching of hierarchical data using
pg-grams, Proc. of 31st International Conference on Very Large Data Bases (VLDB), 2005,
pp. 301-312.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, and A. Marchetti-Spacca@eataplexity
and approximation - combinatorial optimization problems and their approximability prop-
erties 2nd ed., Springer-Verlag, 2002.

T. Akutsu, D. Fukagawa, and A. Takag\pproximating tree edit distance through string edit
distance Proc. of Third International Conference on Distributed Computing and Internet
Technology (ICDCIT), ISSAC, Lecture Notes in Computer Science, 2006, pp. 90-99.

T. Akutsu and M. M. Hallérsson,On the approximation of largest common subtrees and
largest common point set§heoretical Computer Scien@83(2000), 33-50.

T. Akutsu, An RNC algorithm for finding a largest common subtree of two (réEekCE
Trans. Information and Syster&§5-D (1992), 95-101.

T. Akutsu, Approximate string matching with variable length don’t care charagtés
ICE Transactions on CommunicatigBtectronicginformation and Systems78-D (1996),
no. 9, 1353-1354.

T. Akutsu, Dynamic programming algorithms for RNA secondary structure prediction with
pseudoknotiscrete Applied Mathematickd4 (2000), 45—-62.

T. Akutsu, A relation between edit distance for ordered trees and edit distance for euler
strings Information Processing Lett&00(2006), no. 3, 105-109.

K. F. Aoki-Kinoshita, N. Ueda, H. Mamitsuka, and M. KanehiBapfilePSTMM: capturing
tree-structure motifs in carbohydrate sugar chaif&viB, 2006, pp. 25-34.

K. Aoki, An algorithm computing the distance of tai between two labeled ordered trees
Transactions of the Institute of Electronics and Comunication Engineers of J&pah
(1983), no. 1, 49-56, (In Japanese).

J. Allali and M.-F. SagotNovel tree edit operations for RNA secondary structure compari-
son WABI 2004, LNBI 3240, 2004, pp. 412-425.

K. F. Aoki, A. Yamaguchi, Y. Okuno, T. Akutsu, N. Ueda, M. Kanehisa, and H. Mamit-
suka,Efficient tree-matching methods for accurate carbohydrate database quéeesme
Informatics14 (2003), 134-143.

M. Badoiu, Algorithmic embeddingsPh.D. thesis, Massachusetts Institute of Technology,
2006.

S. Berretti, A. Del Bimbo, and P. Pal&,graph edit distance based on node mergiRgpc.
of Image and Video Retrieval: Third International Conference (CIVR), Lecture Notes in
Computer Science, vol. 3115, 2004, pp. 464-472.

149

150 Bibliography

[BCD95] D. Barnard, G. Clarke, and N. Duncafee-to-tree correction for document tre€ech.
Report 95-375, Queen'’s University, Kingston, Ontario K7L 3N6 Canada, January 1995.

[BDFW95] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Warehaime parameterized
complexity of sequence alignment and conseridusoretical Computer Scienéd7(1995),
no. 1-2, 31-54.

[BESO6] T. Batu, F. Erg@in, and S. C. Sahinal@blivious string embeddings and edit distance approx-
imations Proc. of 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2006, pp. 792—-801.

[BGO5] P. Bille and I. L. Gartz,The tree inclusion problem: In optimal space and fasteroc.
32nd International Colloquium on Automata, Languages and Programming (ICALP), Lec-
ture Notes in Computer Science, vol. 3580, 2005, pp. 66—77.

[BHROO] L. Bergroth, H. Hakonen, and T. Rait& survey of longest common subsequence algorithms
Proc. of 17th International Symposium on String Processing Information Retrieval (SPIRE),
2000, pp. 39-48.

[BilO3] P. Bille, Ordered tree edit distance withmerge and split operatidmdJniversity Technical
Report Series TR-2003-35, IT University of Copenhagen, September 2003.

[BilO5] P. Bille, A survey on tree edit distance and related probleheeoretical Computer Science
337(2005), no. 1-3, 217-239.

[BJKOOQ] H. Bunke, X. Jiang, and A. KandeDOn the minimum common supergraph of two graphs
Computing65 (2000), 13-25.

[BKO3] S. Burkhardt and J. &kkainen,Better filtering with gapped-grams Fundamenta Infor-
maticaes6 (2003), no. 1-2, 51-70.

[BPSO00] I. M. Bomze, M. Pelillo, and V. StixApproximating the maximum weight clique using repli-
cator dynamicslEEE Transaction on Neural Network4 (2000), no. 6, 1228-1241.

[BS98] H. Bunke and K. Sheareh graph distance metric based on the maximal common subgraph
Pattern Recognition Letted® (1998), 255—-259.

[Bun97] H. Bunke, On a relation between graph edit distance and maximum common subgraph
Pattern Recognition Lettefds3 (1997), 689-694.

[BZRNO6] B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijsdean’t be afraid of simpler
patterns Proc. of 10th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD), Lecture Notes in Computer Science, vol. 4213, 2006, pp. 55—
66.

[CDO01] M. Collins and N. Ddty, Convolution kernels for natural languag@dvances in Neural
Information Processing Systems 14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001], MIT Press, 2001, pp. 625-632.

[CGM9I7] S. S. Chawathe and H. Garcia-Moliddeaningful change detection in structured da®aoc.
of the ACM SIGMOD International Conference on Management of Data, 1997, pp. 26—37.

[Cha99a] S. S. ChawatheZomparing hierarchical data in external memoBroc. of the 25th Interna-
tional Conference on Very Large Data Bases (Edinburgh, Scotland, U.K.), 1999, pp. 90-101.

[Cha99b] S.S. ChawatheManaging change in heterogeneous autonomous datapB$eB. thesis,
Stanford University, 1999.

[Che98] Weimin ChenMore dficient algorithm for ordered tree inclusipdournal on Algorithm26
(1998), no. 2, 370-385.

[Che01] W. Chen,New algorithm for ordered tree-to-tree correction probledournal of Algorithm

40(2001), 135-158.

Bibliography

151

[CLO1]

[CLRSO01]

[CLZU02]

[CMO2]

[CMO7]

[Cor03]

[CRO2]

C.-C. Chang and C.-J. LihIBSVM: a library for support vector maching2001, Software
available at httgfwww.csie.ntu.edu.tf@cjlin/libsvrry.

T. H. Cormen, C. E. Leiserson, R..L. Rivest, and C. Stkitrpduction to algorithmsMIT
Electrical Engineering and Computer Science, The MIT Press, 2001.

M. Crochemore, G. M. Landau, and M. Ziv-Ukels@h sub-quadratic sequence alignment
algorithm for unrestricted cost matriceBroc. of 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2002, pp. 679-688.

G. Cormode and S. MuthukrishnaPhe string edit distance matching problem with moves
SODA, 2002, pp. 667-676.

G. Cormode and S. Muthukrishnafhe string edit distance matching problem with moves
ACM Transactions on Algorithm3 (2007), no. 1.

G. Cormode Sequence distance embeddingk.D. thesis, University of Warwick, January
2003.

M. Crochemore and W. Ryttedewels of stringology — text algorithm@/orld Scientific
Publishing, Hong-Kong, 2002, 310 pages.

[CRGMW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widdimange detection in hier-

[CS04]

[DA92]
[DDRL99]

[DMRWO7]

[DST80]

[DTO03a]

[DTO3b]

[DTO5]

[FA06]

[FGOO]

[FGO3]

[FOO05]

archically structured informationProceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 1996, pp. 493-504.

A. Culotta and J. S. Sorensddependency tree kernels for relation extracti®noc. of 42nd
Annual Meeting of the Association for Computational Linguistics (ACL), 2004, pp. 423—
429,

S. Doubet and P. Albersheif@arbbank Glycobiology2 (1992), no. 6.

S. Degroote, M. P. Ducourouble, P. Roussel, and G. LamBbuential biosynthesis of sul-
fated angbr sialylated Lewis x determinants by transferases of the human bronchial mucosa
Glycobiology9 (1999), no. 11.

E. Demaine, S. Mozes, B. Rossman, and O. WeimAnmgptimal decomposition algorithm
for tree edit distanceProc. of the 34th International Colloquium on Automata, Languages
and Programming (ICALP), 2007.

P. J. Downey, R. Sethi, and R. E. TarjMariations on the common subexpression problem
Journal of the Association for Computing Machinery (J. ACM)(1980), no. 4, 758-771.

S. Dulucq and L. TichitRna secondary structure comparison: exact analysis of the zhang-
shasha tree edit algorithnTheoretical Computer Scien886(2003), no. 1-3, 471-484.

S. Dulucq and H. Touzetinalysis of tree edit distance algorithpBroc. in 14th Annual
Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes of Computer Sci-
ence, vol. 2676, 2003, pp. 83-95.

S. Dulucq and H. TouzeDecomposition algorithms for the tree edit distance probléour-
nal of Discrete Algorithm$ (2005), no. 2—4, 448-471.

Daiji Fukagawa and Tatsuya Akutsikast algorithms for comparison of similar unordered
trees International Journal of Foundations of Computer Sciei®t€006), no. 3, 703—-729.

P. Ferraro and C. Godir distance measure between plant architectufamals of Forest
Scienceb7 (2000), 445-461.

P. Ferraro and C. Godisyn edit distance between quotiented trefdgorithmica36 (2003),
1-39.

P. Ferraro and A. Ouangraouagcal mapping between unordered tre@ech. Report RR-
105, LaBRI, 2005.

152 Bibliography

[FRVO04] M. V. Ferro, F. J. Ribadas, and J. Vilaré®jrase similarity through the edit distanderoc.
of Database and Expert Systems Applications, 15th International Conference, DEXA 2004,
Lecture Notes in Computer Science, vol. 3180, 2004, pp. 306-317.

[FSS90] P. Flajolet, P. Sipala, and J.-M. Steyadthalytic variations on the common subexpression
problem Automata, Languages and Programming, Lecture Notes in Computer Science, vol.
443, Springer Verlag, 1990, pp. 220-234.

[GBO02] S. Ginter and H. BunkeSelf-organizing map for clustering in the graph domahattern
Recognition Letter23(2002), 405-417.

[GJ79] M. R. Garey and D. S. Johnso@pomputers and Intractability: A Guide to the Theory of
NP-Completenes$V. H. Freeman And Company, New York, 1979.

[GKO5] M. Garofalakis and A. KumaXML stream processing using tree-edit distance embeddings
ACM Transactions on Database Syste302005), no. 1, 279-332.

[Gus97] D. Gusfield,Algorithms on strings, trees, and sequences: Computer science and computa-
tional biology, Cambridge University Press, 1997.

[HAKU *06] K. Hashimoto, K. F. Aoki-Kinoshita, N. Ueda, M. Kanehisa, and H. Mamitsukajew
gfficient probabilistic model for mining labeled ordered treK®D, 2006.

[Hau99] D. HausslerConvolution kernels on discrete structur€fCSC-CRL 99-10, Dept. of Com-
puter Science, University of California at Santa Cruz, 1999.

[HGK*06] K. Hashimoto, S. Goto, S. Kawano, K. F. Aoki-Kinoshita, and N. Ud€kgg as a glycome
informatics resourceGlycobiology16 (2006), 63R—70R.

[HKO5] A.Hogue and D. KargefThresher: Automating the unwrapping of semantic content from the
world wide web Proc. of 14th International World Wide Web Conference (WWW), 2005,
pp. 86-95.

[HM76] J. W. Hunt and M. D. McllroyAn algorithm for djferential file comparisonTech. Report
CSTR #41, Bell Telephone Laboratories, 1976.

[HMUO06] Y. Horsesh, R. Mehr, and R. Ung&esigning an a* algorithm for calculating edit distance
between rooted-unordered tregournal of Computational Biology3 (2006), no. 6, 1165—
1176.

[Hoc05] M. HochsmannThe tree alignment model: Algorithms, implementations and applications
for the analysis of rna secondary structur@h.D. thesis, Technishhen Falatltler Univer-
sitat Bielefeld, 2005.

[HTGKO3] M. Hochsmann, T. dller, R. Giegerich, and S. Kurtt,ocal similarity in RNA secondary
structures Proc. of the Computational Systems Bioinformatics (CSB), IEEE, 2003, pp. 159—-
168.

[HYHKO4] Y. Hizukuri, Y. Yamanishi, K. Hashimoto, and M. Kanehigatraction of species-specific
glycan substructuresGenome Informatics. Proc. of International Conference on Genome
Informatics (GIW), vol. 1, 2004, pp. 69-81.

[HYN*05] Y. Hizukuri, Y. Yamanishi, O. Nakamura, F. Yagi, S. Goto, and M. Kanehisdraction
of leukemia specific glycan motifs in humans by computational glyco@edohydrate
researct840(2005), no. 14, 2270-2278.

[Jan03] J. JanssorConsensus algorithms for trees and strinBh.D. thesis, Lund University, Swe-
den, 2003.

[JLO3] J. Jansson and A. LingaA, fast algorithm for optimal alignment between similar ordered

trees Fundamenta Informaticdss (2003), 105-120.

Bibliography

153

[JU91]

[JWZ95]

[Kan91]

[KHAK *06]

[KHK *06]

[KHK *07]

[KHOHO6]

[KKO2]

[KKSS03]

[Kle9s]

[KLM *+00]

[KMO95]

[KRO6]

[KS01]

[KSKO06a]

[KSKO6D]

[KSMO5]

[KSMY05]

P. Jokinen and E. Ukkonemo algorithms for approximate string matching in static texts
Proc. of 16th Symposium on Mathematical Foundations of Computer Science (MFCS’91)
LNCA, vol. 520, 1991, pp. 240-248.

T. Jiang, L. Wang, and K. ZhangJignment of trees — an alternative to tree editeoretical
Computer Scienc£43(1995), 137-148.

V. Kann,Maximum bounded 3-dimensional matching in max snp-compfétegmation Pro-
cessing Letter (IPLB7(1991), no. 1, 27-35.

T. Kuboyama, K. Hirata, K. F. Aoki-Kinoshita, H. Kashima, and H. Yasudlgram distri-
bution kernel applied to glycan classification and motifextracgti@enome Informatic47
(2006), no. 2, 25-34.

T. Kuboyama, K. Hirata, H. Kashima, K. F. Aoki-Kinoshita, and H. Yasudlapectrum tree
kernel Proc. The International Workshop on Data Mining and Statistical Science (DMSS),
2006, pp. 109-116.

T. Kuboyama, K. Hirata, H. Kashima, K. F. Aoki-Kinoshita, and H. Yasullggpectrum
tree kernel Transactions of the Japanese Society for Artificial Intellige2€2007), no. 2,
140-147.

T. Kuboyama, K. Hirata, N. Ohkura, and M. Hara®g-grams based distance for ordered
labeled trees Proc. of 4th Workshop on Learning with Logics and Logics for Learning
(LLLL), 2006, pp. 77-83.

H. Kashima and T. KoyanagKernels for semi-structured dat&roc. of 9th International
Conference on Machine Learning (ICML), 2002, pp. 291—-298.

K. Kailing, H.-P. Kriegel, S. Scbnauer, and T. SeidEfficient similarity search for hierar-
chical data in large databaseProc. of 9th International Conference on Extending Database
Technology (EBDT), Lecture Notes in Computer Science, vol. 2992, 2003.

P. N. Klein, Computing the edit-distance between unrooted ordered,tRmeg. of 6th An-
nual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol.
1461, 1998, pp. 91-102.

J. D. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, and M. Vingrdn,
polyhedral approach to sequence alignment probleDiscrete Applied Mathematick04
(2000), 143-186.

P. Kilpeldinen and H. MannilaDrdered and unordered tree inclusio8IAM Journal on
Computing24 (1995), no. 2, 340-356.

R. Krauthgamer and Y. Rabatimproved lower bounds for embeddings infpfProc. of 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp. 1010-1017.

T. Kahveci and A. K. SinghEfficient index structures for string databasé¥oc. of 27th
International Conference on Very Large Data Bases (VLDB), 2001, pp. 351-360.

H. Kashima, H. Sakamoto, and T. Koyanagiee kernels Transactions of the Japanese
Society for Atrtificial Intelligence21 (2006), no. 1, 113-121, (In Japanese).

T. Kuboyama, K. Shin, and H. Kashimlgexible tree kernels based on counting the number
of tree mappingsProc. of 4th International Workshop on Mining and Learning with Graphs
(MLG) in conjunction with ECMI/PKDD, 2006, pp. 61-72.

T. Kuboyama, K. Shin, and T. Miyahar#, theoretical analysis of tree edit distance mea-
sures Transactions on Mathematical Modeling and its Applications (TOM13), The Infor-
mation Processing Society of Jap#h(2005), no. 17, 31-45.

T. Kuboyama, K. Shin, T. Miyahara, and H. Yasudaheoretical analysis of alignment and
edit problems for tregsProc. of 9th Italian Conference of Theoretical Computer Science
(ICTCS), Lecture Notes in Computer Science, vol. 3701, 2005, pp. 323-337.

154

Bibliography

[KWUO6]

[LBLL *06]

[LENO2]

[Lev66]

[LSST02]

[LSTO1]

[Lu79]

[Mat78]

[MLGB92]

[Mos06]

[MP8O0]

[MRO7]

[MS05]

[MT92]

[MTLO2]

[Mye99]

[NBYSTO1]

[NRO2]

INW70]

J. B. Kruskal, M. Wish, and E. M Uslandvultidimensional scaling (quantitative applica-
tions in the social sciencesyage Publications, 2006.

T. Lutteke, A. Bohne-Lang, A. Loss, T. Goetz, M. Frank, and C.W. von der L@&LY,CO-
SCIENCES.de: an internet portal to support glycomics and glycobiology rese@tgbo-
biology 16 (2006), no. 5.

C. S. Leslie, E. Eskin, and W. S. NoblEpe spectrum kernel: A string kernel for svm protein
classification Pacific Symposium on Biocomputing, vol. 7, 2002, pp. 566-575.

V. |. Levenshtein,Binary codes capable of correcting insertions and revers&sviet
Physics Dokladyl0 (1966), no. 8, 707—710.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. J. C. H. Wallkéns classi-
fication using string kernelsJournal of Machine Learning ReseaZ(R002), 419-444.

C. L. Lu, Z.-Y. Su, and C. Y. Tang) new measure of edit distance between labeled trees
COCOON, Lecture Notes in Computer Science, vol. 2108, 2001, pp. 338—-348.

S.-Y. Lu, A tree-to-tree distance and its application to cluster analyi&EE Transactions
on Pattern Analysis and Machine Intelligeric€l979), no. 2, 219-224.

D. W. Matula, Subtree isomorphism i@(n>2), Annals of Discrete Mathemati&(1978),
91-106.

T. P. Mawhinney, D. C. Landrum, D. A. Gayer, and G. J. Barbe®alfated sialyl-
oligosaccharides derived from tracheobronchial mucous glycoproteins of a patjniisg
from cystic fibrosisCarbohydr. Re235(1992).

Alessandro MoschittEfficient convolution kernels for dependency and constituent syntactic
trees Proc. of 17th European Conference on Machine Learning, Berlin (ECML), Lecture
Notes in Computer Science, vol. 4212, 2006, pp. 318-329.

W. J. Masek and M. PatersoA,faster algorithm computing string edit distance®urnal
of Computer and System Scien@(1980), no. 1, 18-31.

F. Magniez and M. de Rougemomtoperty testing of regular tree languagesigorithmica
(2007), To appear, (httfgwww.Iri.fr/"magnieZPAPIER3mr-algorithmica06.pdf).

Dinesh P. Mehta and Sartaj Sahni (edsiandbook of data structures and applications
Chapman & HaJlCRC Computer & Information Science Series, CRC Press, 2005.

J. Matosek and R. ThomagOn the complexity of finding iso- and other morphisms for
partial k-trees Discrete Mathematics08(1992), no. 1-3, 343-364.

B. Ma, J. Tromp, and M. LiPatternHunter; Faster and more sensitive homology search
Bioinformatics18 (2002), 440—-445.

G. Myers, A fast bit-vector algorithm for approximate string matching based on dynamic
programming Journal of the Association for Computing Machinery (J. ACAM)(1999),
no. 3, 395-415.

G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tathiexing methods for approximate
string matching IEEE Data Engineering Bulletid4 (2001), no. 4, 19-27.

G. Navarro and M. Ré@not, Flexible pattern matching in strings — practical on-line search
algorithms for texts and biological sequenc€&sambridge University Press, 2002, ISBN
0-521-81307-7. 280 pages.

S. B. Needleman and C. D. Wunséhgeneral method applicable to the search for similar-
ities in the amino acid sequence of two proteidsurnal of Molecular Biology8 (1970),
43-453.

Bibliography

155

[OHKHO5]

[Ols05]

[ORO5]

[OT88]

[PFRO6]

[Rah07]

[Ric97]

[RKHO2]

[RKHO3]

[Sak03]

[Sel77]

[Sha48]

[SI05]

[SS02]

[STCO4]

[SW81]

[SZ90]

[SZ97]

[Tai79]

N. Ohkura, K. Hirata, T. Kuboyama, and M. Hardtheg-gram distance for ordered unla-
beled treesProc. of 8th International Conference on Discovery Science (DS), Lecture Notes
in Computer Science, vol. 3735, 2005, pp. 189-202.

O. F. OlsenTree edit distances from singularity thepBroc. in 5th International Conference
on Scale Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science,
vol. 3459, 2005, pp. 316—-326.

R. Ostrovsky and Y. Rabankow distortion embeddings for edit distanderoc. of 37th
Annual ACM Symposium on Theory of Computing (STOC), 2005, pp. 218-224.

K. Ohmori and E. Tanaka unified view on tree metricpp. 85-100, Springer-Verlag New
York, Inc., 1988, Nato Asi Series.

A. Passerini, P. Frasconi, and L. De Rad&tnels on prolog proof trees: Statistical learning
in the ILP setting Journal of Machine Learning Researt(2006), 307-342.

S. Rahmannfoundation of sequence analysikan 2007, Lecture notes for a course in the
Winter Semester 20007 .

T. Richter,A new measure of the distance between ordered trees and its appli¢catemis
Report 85166-CS, Dept. of Computer Science, Univ. of Bonn, 1997.

A. Robles-Kelly and E. R. HancocBtring edit distance, random walks and graph matching
Proc. in Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, Lecture Notes in Computer Science, vol. 2396, 2002, pp. 104-112.

A. Robles-Kelly and E. R. Hancoclgraph matching using spectral seriation and string edit
distance Proc. in 4th IAPR International Workshop on Graph Based Representations in Pat-
tern Recognition (GbRPR), Lecture Notes in Computer Science, vol. 2726, 2003, pp. 154—
165.

Y. SakakibaraPair hidden markov models on tree structyr@&oinformatics19 (2003),
232-240.

S. M. Selkow, The tree-to-tree editing problemnformation Processing Letter (IPL§
(1977), no. 6, 184-186.

C. E. ShannonA Mathematical Theory of CommunicatidBell System Techal Journalr
(1948), 379-423, 623-656.

J. Suzuki and H. IsozakiSequence and tree kernels with statistical feature minialy
vances in Neural Information Processing Systems 18 [Neural Information Processing Sys-
tems (NIPS), 2005.

D. Shapira and J. A. StoreEdit distance with move operationt Proc. of 13th Annual
Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Computer Sci-
ence, vol. 2373, 2002, pp. 85-98.

J. Shawe-Taylor and N. Cristianirdernel methods for pattern analysiSambridge Univer-
sity Press, 2004.

T. F. Smith and M. S. Watermaldentification of common molecular subsequendearnal
of Molecular Biology147(1981), 195-197.

D. Shasha and K. Zhangast algorithms for the unit cost editing distance between trees
Journal of Algorithmsl1 (1990), 581-621.

D. Shasha and K. Zhangattern matching algorithmsch. 14:Approximate Tree Pattern
Matching, pp. 341-371, Oxford University Press, 1997.

K.-C. Tai, The tree-to-tree correction problendournal of the Association for Computing
Machinery (J. ACM)26 (1979), no. 3, 422—-433.

156

Bibliography

[Tan83]

[Tan84]

[Tan93]

[Tan95]

[THO2]

[THO3a]

[THO3b]

[THO3C]

[THO3d]

[THO3€]

[Tor04]

[Tou03]

[Tou05]

[TT82]

[TT88]

[UKk92]

[UKKO3]

[Val79]

E. TanakaA bottom-up computing method for the metric between trees defined Dyaias-
actions of the Institute of Electronics and Comunication Engineers of Ji&D (1983),
no. 6, 660-667, (In Japanese).

E. Tanaka,The metric between trees based on the strongly structure preserving mapping
and its computing methedransactions of the Institute of Electronics and Comunication
Engineers of Japait7-D (1984), no. 6, 722-723, (In Japanese).

E. Tanaka,A note on a metric on trees and it's computing methdchnsactions of the
Institute of Electronics, Information and Comunication Engineers of Jap&rD-1 (1993),
no. 11, 635, (In Japanese).

E. TanakaA note on a tree-to-tree editing probleinternational Journal of Pattern Recog-
nition and Avrtificial Intelligenced (1995), no. 1, 167-172.

A. Torsello and E. R. Hancockatching and embedding through edit-union of tregesoc.
in 7th European Conference on Computer Vision-Part Il (ECCV), Lecture Notes in Com-
puter Science, vol. 2352, 2002, pp. 822—-836.

A. Torsello and E. R. HancockGomputing approximate tree edit distance using relaxation
labeling Pattern Recognition Lettes! (2003), no. 8, 1089-1097.

A. Torsello and E. R. HancoclGraph clustering with tree-uniondroc. of 10th Interna-
tional Conference of Computer Analysis of Images and Patterns (CAIP), Lecture Notes in
Computer Science, vol. 2756, November 2003, pp. 451-459.

A. Torsello and E. R. Hancockearning mixtures of tree-unions by minimizing description
length Proc. of 4th International Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR), Lecture Notes in Computer Science, vol.
2683, 2003, pp. 130-146.

A. Torsello and E. R. Hancockearning structural variations in shock treeRBroc. of Joint
IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition,
Lecture Notes in Computer Science, vol. 2396, 2003, pp. 113-122.

A. Torsello and E. R. HancocKyee edit distance from information theoiyroc. of IAPR
Workshop GbRPR, Lecture Notes in Computer Science, vol. 2726, 2003, pp. 71-82.

A. Torsello, Matching hierarchical structures for shape recognitidth.D. thesis, Depart-
ment of Computer Science, The University of York, 2004.

H. Touzet,Tree edit distance with gapformation Processing Lette8$ (2003), 123-129.

H. Touzet, A linear tree edit distance algorithm for similar ordered treé¢xoc. of 16th
Annual Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Computer
Science, vol. 3537, 2005, pp. 334-345.

E. Tanaka and K. Tanak&, metric on trees and it's computing methdaansactions of the
Institute of Electronics and Comunication Engineers of Jaé&aD (1982), no. 5, 511-518,
(In Japanesekgrrors in this article are corrected|ifan93].

E. Tanaka and K. Tanak@he tree-to-tree editing problgnmternational Journal of Pattern
Recognition and Artificial Intelligenc@ (1988), no. 2, 221-24Qrrors in this article are
corrected ifTan95].

E. Ukkonen Approximate string-matching wittxgrams and maximal matcheBheoretical
Computer Scienc82 (1992), no. 1, 191-211.

E. Ukkonen Approximate string-matching withrgrams and maximal matcheBheoretical
Computer Scienc82 (1993), 191-211.

L. G. Valiant, The complexity of computing the perman@riteoretical Computer Scien8e
(1979), 189-201.

Bibliography

157

[Valos]

[Valo]

[Valos]

[Vap95]
[Var02]
[Ver02]

[VS02]

[WF74]

[WZ01]

[WZ03]

[WZ05]

[XRD*05]

[Yan91]

[YKTO5]

[ZARO3]

[Zha95]

[Zha96]

[2J94]

[ZLOS5]

[2S89]

[2SS92]

[ZSW94]

G. Valiente Algorithms on trees and graphSpringer, 1998.

G. Valiente,An gficient bottom-up distance between treBsoc. of 8th International Sym-
posium on String Processing and Information Retrieval (SPIRE), IEEE Computer Science
Press, 2001, pp. 212-219.

G. Valiente,Constrained tree inclusigndournal on Discrete Algorithn (2005), no. 2—4,
431-447.

V. Vapnik, The nature of statistical learning theqrgpringer, New York, 1995.
A. Varki (ed.),Essentials of glycobiologyCold Spring Harbor Laboratory Press, 2002.

J.-P. Vert,A tree kernel to analyze phylogenetic profjl8$oinformatics18 (2002), S276—
S284.

S. V. N. Viswanathan and A. J. SmolBast kernels for string and tree matchiniyeural
Information Processing Systems (NIPS2002), MIT Press, 2002, pp. 569-576.

R. A. Wagner and M. FischeThe string-to-string correction problemdournal of the Asso-
ciation for Computing Machinery (J. ACM)1(1974), no. 1, 168-173.

J.T.-L. Wang and K. Zhangsinding similar consensus between trees: an algorithm and a
distance hierarchyPattern RecognitioB4 (2001), 127-137.

L. Wang and J. ZhaoParametric alignment of ordered treeBioinformatics19 (2003),
no. 17, 2237-2245.

L. Wang and K. ZhangSpace ficient algorithms for ordered tree comparispiroc. of
16th International Symposium of Algorithms and Computation (ISAAC), Lecture Notes in
Computer Science, vol. 3827, 2005, pp. 380-391.

B. Xia, J. A. Royall, G. Damera, G. P. Sachdev, and R. D. Cummigtered o-
glycosylation and sulfation of airway mucins associated with cystic fipr@iscobiology
15(2005), no. 8.

W. Yang, Identifying syntactic dferences between two progran&oftware - Practice and
Experience21(1991), no. 7, 739-755.

R. Yang, P. Kalnis, and A. K. H. Tun&imilarity evaluation on tree-structured dafroc. of
the 2005 ACM SIGMOD international conference on Management of data, 2005, pp. 754—
765.

D. Zelenko, C. Aone, and A. Richardelldernel methods for relation extractipdournal of
Machine Learning Resear@(2003), 1083-1106.

K. Zhang, Algorithms for the constrained editing distance between ordered labeled trees
and related problemdPattern Recognitio88 (1995), no. 3, 463—-474.

K. Zhang, A constrained edit distance between unordered labeled ,tilg®rithmica 15
(1996), 205-222.

K. Zhang and T. Jiangsome MAX SNP-hard results concerning unordered labeled, trees
Information Processing Letted® (1994), no. 5, 249-254.

Y. Zhai and B. Liu,Web data extraction based on partial tree alignmertoc. of 14th
International World Wide Web Conference (WWW2005), 2005, pp. 76—85.

K. Zhang and D. Shash&jmple fast algorithms for the editing distance between trees and
related problemsSICOMP18(1989), no. 6, 1245-1262.

K. Zhang, R. Statman, and D. Shaska the editing distance between unordered labeled
trees Information Processing Letted® (1992), no. 3, 133-139.

K. Zhang, D. Shasha, and J. T.-L. Warpproximate tree matching in the presence of
variable length don’t careslournal of Algorithmdl 6 (1994), no. 1, 33-66.

Symbols
(T8 oo 20
(r]})T 20
S 19
S 20
e 24
A= b 11
ACS,T) oo 39
AT, Y) oo 14
O 93
C-MapPPINg . .ot 32
Ch(y) ..o 20
AT, Y) e 26
DAN(Z, Y) e oo 14
DAN(S, T oo 39
DF(S,T) e 38
DﬁS(S7) 38
DT (@, y) 11
DqGRAM(:r7 B 18
DT (@, 1Y) e 12
deglr). ..o 20
degl’) ..o 20
O(T,) oot 104
deplr). ..o 20
dep) ..o 20
et 10, 25
(Zl)?(T) 20
... 22
E(S) e 26
E(T,Y) e 11
e 20
FU) o 21
PO 23
Y 121
LB | e 20
) o 21
LS,) e e e oot 12
(2 e 28
0T o 19
ME) oo 32
M7YZ) oo 32
My e 116
MG oo 32
MO 32
MO 32
Mozo Mg 33
MOS,T) oo 32
ME(S,T) oo 32

MUT,Y) e 16
N o 4
PANE) . oo 20
R o 4
R et 4
117 1S 47
Raz() o 47
S 50
D 10,21
2 20
175 20
TIUL o e 21
S 23
7 23
7 121
UPL(0) et 132
VD) e 20
1| P 4
772 10
e 25
#P-complete 107
S 11, 25
A

absolute approximation 56
absorbent........ ... 121
ACC . ot 91, 92
accordantmapping.................... 92,108
afinegappenalty.......................... 63
alignable mapping 39, 46, &%, 88
alignedtree................... ..o 39,85
alignment......... ... 13
alignmentdistance 14, 39
alignmentof strings........................ 13
alignmentoftrees 38
alignmentproblem......................... 39
alphabet. ...l 10,21
ANCESION ...ttt 19
approximate common subforest............. 36
approximate common subsequence.......... 12
approximate common supersequence........ 13
approximate common supertree problem. 41
areaunderthe ROCcurve................. 138
B

blockmovel 19
bottom-up distance 61
bottom-up mapping............ 61

Index 159
c gapsymbol 11, 13,25
Cdistance ... 33 gapped editdistance 63
chain. 19 glycan.......... .o 101, 137
child.........o 20 gram distribution. 132
classlabel............c. i i 101 gram distribution kernel. 132
closureo 93 GrammatriX........cooviiiinnaaa... 102
closure oftree mappingcoovo.... 93
collapseddepth.................coovvnnn.. 29 H
common subtree pattern 79, 80 height. ... 20
comparable, 19 hierarchicalorder............ 19, 20, 21, 68, 72
complete subforest......................... 21
completesubtree 21 ' - - -
composition of tree mappings. 33 !dentlt_y edit operation............... 12, 13, 36
concatenationiiiiiiii, 10 dnclusion ... 62
constrained distance 2,51 incomparable ... 19
constrained edit distance mapping........... 52 !nsemon KRR REEEER R RRERRRRY 10, 73
constrained mapping 51,81, 82, 83, 85 isolated-subtree distance 51
constrained tree inclusion 62 lisolated-subtree mapping................... 51
CONrACHiON. . . oottt 74 isomorphism............oo 69
CONVEX gapP CoSt . ..o v 63 K
convolutionkernel 101, 102)
kernelfunction...................... 101, 102
D kernelmethod 101, 102
decision function..............., 101 kerneltrickot 102
declarative definition................ 10, 16, 32 keyrootsl) 29
declarative semantics 32 Kroneckersdelta......................... 104
decomposition strategy 26, 30
degreeooii 20,45 L
deletion........ooviiiii 10, 78 1-NOMM L 4
depth. . ..o 20 labelsequence........................ 24,125
depthsequence................cccoeven... 125 labeledforest it 21
descendent...........ooeiiiiiii 19 labeledtree......................ol 21
direCtion. 30 labeled tree kernel........................ 106
distance 9 labeledtreesl 21
duality theoremccooiviinn... 79 labelling function.......................... 21
duplication.coveiiiiiiiiii... 74 largest common subforest pattern........... 38
dynamic programming 14 largest common substructure................ 38
largest common subtree 59
E layered trimerkernel...................... 137
editgraph............................ 15,59 |LCA-presemnving..........ooouieiiiiii... 76
editoperation ..., 10 LCS COSt . . o oo 38, 59
ed@t S.CI‘ipt 11, 26 LCS Problemoooneeenn 12, 16
editsignature ... 10, 25 LCST ..\ 59
elastictreekernel......................... 107 leaf ... 20
embedding ... 70,121 |east common ancestor. 72,76
Exact Coverby 3-Sets Bl 1eaVEST) e 20
= lefttotal 62
feature 102 leftmostleaf ... 70
feature score...........cociiiiiiiinnnnnn. 140 Iess-constra?ned distanpe """"""""" 2,55
featurespace. ..., 102 Iess-constram_ed mapping......... 55, 84,85, 88
fixed parameter algorithm 61 Levenshteindistance....................... 11
fixed-parameter, 16 L_IBSVM """""""""""""""" 138
fixed-parameter algorithm 27 41 45 I!ne tree ... R R R RIRREE 126
forest. ... 20 I!near EXIENSION ..o 24
induced by a setof nodes 21 linear qrder 19
localalignment............................ 63
G local similarityo L. 63
[0 =T o 63 longest common subsequence problem 12

160 Index
low-distortion embeddings.............. 18, 64 g-gramdistance 17,63,131
Ludistance ... 50 g-gramprofile.............. 17,105
LUMappPiNg. ... 92 g-spectrumkernel.................... 105, 131
M R
match.................ooo 126 relevant forest.oouuuueeeinini... 28
MAX SNP-hard........................ 31,90 replacement.ovviiiiiiiiiain 10
Maximum Bounded Covering by 3-Sets 31 residue 71
maximum weighted clique.................. 3L ight ... 20
maxpatif?). ... 132 rightbranch...............ooooiiiioin.. 128
MDS......o 18 0o S 19
Merge Operation B2 TOOUT) e e veeeeee e 19
MEtHC . . 95 oo Ty 1 =To =Y 47,50
Metric SPaceovvviiiiiiiiin. 9 rooted orderedtreein.. 20
minimal ... 19 rOOtEd treEo e ettt 19
MINIMUM .. 19
MONOONIC. ...t v i iien 33,95 S
motif........ . 140 semi-accordantmapping 91
move operation........................ 19, 62 sibling.........ooo 20
multi-dimensional scaling.................. 18 siblingorder ... 20
multiple alignment......................... 17 similarity function........................ 102
multiple tree matching problem............. 61 spectrumkernel........... ... 105, 125
SUING . oo 10
N string edit problem ...l 11
negram.....covevniniiiii e 17 stringkernelc it 104
NOdeo 19 strongly structure—preserving mappmg ... 50,83
null nOQe 25 strongly-preserving mapping 50
NUILSEANG ... 10 structure-preserving distance 47
o structure-preserving mapping 48, 82
OCCUITENCE « v v eeeeeaaaeaeen 17,126 structure-respecting distance................. 55
operational definition................. 9, 14, 26 strgcgudri-respectmg mapping............ 55, 8;
operational semantics...................... 26 SUDAUAIIVE ... :
optimal alignment 13, 14, 39 subclass ... 32
OptMAlC-MAPPING - -+ veeeeeer 33 subforest ... 21
optimal editscript...................... 11, 26 subsequence """""""""""""""" 10
orderedforest.............. ...l 20, 22 substr!ng """"""""""""""""" 10
orderedtree........... ..o, 20 SUBSHING MOVE . ..ot 19
SUBrEE ... 21
P subtreepattern............ ... i 21
parameterized complexity 16 subtree-congruentmapping................ 106
PArEN. ...t 20 sugarchain...............ooo 137
parentSeqUENCec.oovvviineeiinnnnnns 125 superclass 32
parsetreekernel................ooiiint. 106 SUPErSEqUENCEovvuvnnnnnnnnnns 13
partial order.ooovuiiiiiiia.. 19 SUPEIIEE ...t 40
partially orderedset........................ 19 support vector machine 101
POSEL . ottt e 19 SVM. 101
positive semidefinite...................... 102 swappingoperation........................ 62
POSIOTAEr. ..ot 23,125 SYmMmetric... ... 33
e =Y 1 J 64 SYMMEtry. ... 95
preorder. 23
PrOPEr @nCeStON. .. oot e e viiee e vieens 19 1 —
proper descendentoveeeeiii... 19 Ta! dlgtance 2,26
Proper subclass.vvviiiiiiannn. 32 Taieditproblem................... 26
Proper SUPEerclassooueveeueenann.. 32 Taimapping.............. EEEREERE 34,79,114
pseudometric 9,18 top-down common subtree isomorphism..... .. 59
top-downdistance......................... 57
Q top-downmapping.................... 57, 106
G-OramM . . 17,126 totalorder i 19

Index

161

totallyorderedset......................... 19
rACE ..t e 16
traceback........... ...l 14
trainingdata................. o oL 101
transitive.................... 33,35, 95,121
transitivity 52
IrEE . 20
freeg-gram ..., 126
tree editdistance ol 2
tree editproblem ...l 26
tree homomorphism.................... 68, 70
treeinclusionl 62
tree isomorphism............ 69
treemapping. ... 2,32
U

UNILCOSES . ..o i i e 11, 38
unit-cost editdistance...................... 11
universaltree ..., 121
unorderedforest.............. ... o ... 20
unorderedtree..........ccovviiiiiiiiinn.. 20
unordered trees. ...ttt 20
unrooted orderedtree 26
Vv

VeI EX ot e 19
VLDC. .. 31
w

weightvector L. 101
X

